Albert Descoteaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2697963/publications.pdf

Version: 2024-02-01

84 papers 6,868 citations

38 h-index 80 g-index

94 all docs 94 docs citations

times ranked

94

8537 citing authors

#	Article	IF	CITATIONS
1	VAMP3 and VAMP8 Regulate the Development and Functionality of Parasitophorous Vacuoles Housing Leishmania amazonensis. Infection and Immunity, 2022, 90, IAI0018321.	2.2	3
2	Persistent Cutaneous Leishmania major Infection Promotes Infection-Adapted Myelopoiesis. Microorganisms, 2022, 10, 535.	3.6	6
3	Leishmania infantum Defective in Lipophosphoglycan Biosynthesis Interferes With Activation of Human Neutrophils. Frontiers in Cellular and Infection Microbiology, 2022, 12, 788196.	3.9	4
4	Cell-intrinsic Wnt4 ligand regulates mitochondrial oxidative phosphorylation in macrophages. Journal of Biological Chemistry, 2022, , 102193.	3.4	0
5	Jagged–Notch-mediated divergence of immune cell crosstalk maintains the anti-inflammatory response in visceral leishmaniasis. Journal of Cell Science, 2021, 134, .	2.0	5
6	Editorial: Early Events During Host Cell-Pathogen Interaction. Frontiers in Cellular and Infection Microbiology, 2021, 11, 680557.	3.9	0
7	Leishmania donovani Metacyclic Promastigotes Impair Phagosome Properties in Inflammatory Monocytes. Infection and Immunity, 2021, 89, e0000921.	2.2	8
8	Sec22b Regulates Inflammatory Responses by Controlling the Nuclear Translocation of NF-κB and the Secretion of Inflammatory Mediators. Journal of Immunology, 2021, 207, 2297-2309.	0.8	5
9	Fragment-Based Phenotypic Lead Discovery To Identify New Drug Seeds That Target Infectious Diseases. ACS Chemical Biology, 2021, 16, 2158-2163.	3.4	6
10	Differential Induction of SOCS Isoforms by <i>Leishmania donovani</i> Impairs Macrophage–T Cell Cross-Talk and Host Defense. Journal of Immunology, 2020, 204, 596-610.	0.8	18
11	Immunomodulatory Properties of Leishmania Extracellular Vesicles During Host-Parasite Interaction: Differential Activation of TLRs and NF-κB Translocation by Dermotropic and Viscerotropic Species. Frontiers in Cellular and Infection Microbiology, 2020, 10, 380.	3.9	26
12	LPG2 Gene Duplication in Leishmania infantum: A Case for CRISPR-Cas9 Gene Editing. Frontiers in Cellular and Infection Microbiology, 2020, 10, 408.	3.9	8
13	Binding of Leishmania infantum Lipophosphoglycan to the Midgut Is Not Sufficient To Define Vector Competence in <i>Lutzomyia longipalpis</i> Sand Flies. MSphere, 2020, 5, .	2.9	4
14	Study on the Occurrence of Genetic Exchange Among Parasites of the Leishmania mexicana Complex. Frontiers in Cellular and Infection Microbiology, 2020, 10, 607253.	3.9	10
15	Translational profiling of macrophages infected with Leishmania donovani identifies mTOR- and elF4A-sensitive immune-related transcripts. PLoS Pathogens, 2020, 16, e1008291.	4.7	24
16	Intraspecies Polymorphisms in the Lipophosphoglycan of L. braziliensis Differentially Modulate Macrophage Activation via TLR4. Frontiers in Cellular and Infection Microbiology, 2019, 9, 240.	3.9	17
17	The host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous vacuole. PLoS Pathogens, 2019, 15, e1007982.	4.7	36
18	Leishmania braziliensis: Strain-Specific Modulation of Phagosome Maturation. Frontiers in Cellular and Infection Microbiology, 2019, 9, 319.	3.9	19

#	Article	IF	CITATIONS
19	Leishmania donovani Lipophosphoglycan Increases Macrophage-Dependent Chemotaxis of CXCR6-Expressing Cells via CXCL16 Induction. Infection and Immunity, 2019, 87, .	2.2	9
20	<i>Leishmania donovani</i> Induces Autophagy in Human Blood–Derived Neutrophils. Journal of Immunology, 2019, 202, 1163-1175.	0.8	32
21	Moesin and myosin IIA modulate phagolysosomal biogenesis in macrophages. Biochemical and Biophysical Research Communications, 2018, 495, 1964-1971.	2.1	7
22	Fragmentâ€Based Phenotypic Lead Discovery: Cellâ€Based Assay to Target Leishmaniasis. ChemMedChem, 2018, 13, 1377-1386.	3.2	10
23	Leishmania infantum Lipophosphoglycan-Deficient Mutants: A Tool to Study Host Cell-Parasite Interplay. Frontiers in Microbiology, 2018, 9, 626.	3.5	24
24	Leishmania infantum lipophosphoglycan induced-Prostaglandin E2 production in association with PPAR- \hat{l}^3 expression via activation of Toll like receptors-1 and 2. Scientific Reports, 2017, 7, 14321.	3.3	31
25	The Macrophage–Parasite Interface as a Chemotherapeutic Target in Leishmaniasis. RSC Drug Discovery Series, 2017, , 387-395.	0.3	2
26	Cysteine Peptidase B Regulates Leishmania mexicana Virulence through the Modulation of GP63 Expression. PLoS Pathogens, 2016, 12, e1005658.	4.7	41
27	Leishmania major Promastigotes Evade LC3-Associated Phagocytosis through the Action of GP63. PLoS Pathogens, 2016, 12, e1005690.	4.7	56
28	Macrophages Tell the Non-Professionals What to Do. Developmental Cell, 2016, 39, 633-635.	7.0	7
29	Leishmania, the phagosome, and host responses: The journey of a parasite. Cellular Immunology, 2016, 309, 1-6.	3.0	32
30	Innate Immune B Cell Activation by Leishmania donovani Exacerbates Disease and Mediates Hypergammaglobulinemia. Cell Reports, 2016, 15, 2427-2437.	6.4	69
31	Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection. PLoS ONE, 2016, 11, e0148640.	2.5	62
32	Exploitation of the Host Cell Membrane Fusion Machinery by Leishmania Is Part of the Infection Process. PLoS Pathogens, 2016, 12, e1005962.	4.7	30
33	Leishmania survival in the macrophage: where the ends justify the means. Current Opinion in Microbiology, 2015, 26, 32-40.	5.1	89
34	Dok proteins are recruited to the phagosome and degraded in a GP63-dependent manner during Leishmania major infection. Microbes and Infection, 2015, 17, 285-294.	1.9	9
35	<i>Leishmania</i> and the macrophage: a multifaceted interaction. Future Microbiology, 2015, 10, 111-129.	2.0	152
36	Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Frontiers in Immunology, 2014, 5, 491.	4.8	1,774

3

#	Article	IF	Citations
37	Probing druggability and biological function of essential proteins in <scp><i>L</i></scp> <i>eishmaniai>Lombining facilitated null mutant and plasmid shuffle analyses. Molecular Microbiology, 2014, 93, 146-166.</i>	2.5	29
38	<i>Leishmania</i> Promastigotes Induce Cytokine Secretion in Macrophages through the Degradation of Synaptotagmin XI. Journal of Immunology, 2014, 193, 2363-2372.	0.8	44
39	Leishmania Evades Host Immunity by Inhibiting Antigen Cross-Presentation through Direct Cleavage of the SNARE VAMP8. Cell Host and Microbe, 2013, 14, 15-25.	11.0	129
40	Leishmania Dices Away Cholesterol for Survival. Cell Host and Microbe, 2013, 13, 245-247.	11.0	10
41	Synaptotagmin XI Regulates Phagocytosis and Cytokine Secretion in Macrophages. Journal of Immunology, 2013, 190, 1737-1745.	0.8	47
42	Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View. PLoS Neglected Tropical Diseases, 2012, 6, e1763.	3.0	103
43	The Protein Tyrosine Phosphatase SHP-1 Regulates Phagolysosome Biogenesis. Journal of Immunology, 2012, 189, 2203-2210.	0.8	23
44	Leishmania promastigotes: building a safe niche within macrophages. Frontiers in Cellular and Infection Microbiology, 2012, 2, 121.	3.9	123
45	Exclusion of synaptotagmin V at the phagocytic cup by Leishmania donovani lipophosphoglycan results in decreased promastigote internalization. Microbiology (United Kingdom), 2011, 157, 2619-2628.	1.8	20
46	Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. BMC Proceedings, $2011, 5, .$	1.6	0
47	<i>Leishmania donovani</i> Amastigotes Impair Gamma Interferon-Induced STAT1α Nuclear Translocation by Blocking the Interaction between STAT1α and Importin-α5. Infection and Immunity, 2010, 78, 3736-3743.	2.2	57
48	<i>Leishmania donovani</i> Promastigotes Evade the Antimicrobial Activity of Neutrophil Extracellular Traps. Journal of Immunology, 2010, 185, 4319-4327.	0.8	186
49	The Leishmania donovani Lipophosphoglycan Excludes the Vesicular Proton-ATPase from Phagosomes by Impairing the Recruitment of Synaptotagmin V. PLoS Pathogens, 2009, 5, e1000628.	4.7	117
50	Malarial Hemozoin Activates the NLRP3 Inflammasome through Lyn and Syk Kinases. PLoS Pathogens, 2009, 5, e1000559.	4.7	281
51	Roles of phosphatidylinositol 3â€kinase and p38 mitogenâ€activated protein kinase in the regulation of protein kinase Câ€Î± activation in interferonâ€Î³â€stimulated macrophages. Immunology, 2009, 128, e652-60.	4.4	19
52	Leishmania donovani lipophosphoglycan inhibits phagosomal maturation via action on membrane rafts. Microbes and Infection, 2009, 11, 215-222.	1.9	49
53	Large-Scale Phagosome Preparation. Methods in Molecular Biology, 2009, 531, 329-346.	0.9	8
54	Leishmania Invasion and Phagosome Biogenesis. Sub-Cellular Biochemistry, 2008, 47, 174-181.	2.4	31

#	Article	IF	CITATIONS
55	The Exocytosis Regulator Synaptotagmin V Controls Phagocytosis in Macrophages. Journal of Immunology, 2008, 181, 5289-5295.	0.8	40
56	Leishmania infantumPromastigotes Reduce Entry of HIVâ€1 into Macrophages through a Lipophosphoglycanâ€Mediated Disruption of Lipid Rafts. Journal of Infectious Diseases, 2008, 197, 1701-1708.	4.0	10
57	Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane. Cellular Microbiology, 2006, 8, 1922-1931.	2.1	141
58	Tlr5 is not primarily associated with susceptibility to Salmonella Typhimurium infection in MOLF/Ei mice. Mammalian Genome, 2006, 17, 385-397.	2.2	6
59	RNA interference reveals a role for TLR2 and TLR3 in the recognition ofLeishmania donovani promastigotes by interferon–γ-primed macrophages. European Journal of Immunology, 2006, 36, 411-420.	2.9	171
60	Phagocytosis of Leishmania donovani amastigotes is Rac1 dependent and occurs in the absence of NADPH oxidase activation. European Journal of Immunology, 2006, 36, 2735-2744.	2.9	74
61	Leishmania donovani promastigotes induce periphagosomal F-actin accumulation through retention of the GTPase Cdc42. Cellular Microbiology, 2005, 7, 1647-1658.	2.1	48
62	Modulation of phagolysosome biogenesis by the lipophosphoglycan of Leishmania. Clinical Immunology, 2005, 114, 256-265.	3.2	61
63	Contribution of Electron and Confocal Microscopy in the Study ofLeishmania–Macrophage Interactions. Microscopy and Microanalysis, 2004, 10, 656-661.	0.4	13
64	Proteomic analysis reveals a role for protein kinase C- \hat{l}_{\pm} in phagosome maturation. Biochemical and Biophysical Research Communications, 2004, 319, 810-816.	2.1	38
65	IFN-Î ³ -Induced MHC Class II Expression: Transactivation of Class II Transactivator Promoter IV by IFN Regulatory Factor-1 is Regulated by Protein Kinase C-α. Journal of Immunology, 2003, 171, 4187-4194.	0.8	83
66	Protein Kinase C-ζ Regulates Transcription of the Matrix Metalloproteinase-9 Gene Induced by IL-1 and TNF-α in Glioma Cells via NF-κB. Journal of Biological Chemistry, 2002, 277, 35150-35155.	3.4	178
67	Modulation of lipopolysaccharide-induced NF-IL6 activation by protein kinase C-α in a mouse macrophage cell line. European Journal of Immunology, 2002, 32, 2897-2904.	2.9	10
68	Functional aspects of the Leishmania donovani lipophosphoglycan during macrophage infection. Microbes and Infection, 2002, 4, 975-981.	1.9	55
69	LeishmaniaLPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. EMBO Journal, 2002, 21, 4458-4469.	7.8	72
70	Leishmania donovani promastigotes evade the activation of mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase-1/2 during infection of naive macrophages. European Journal of Immunology, 2000, 30, 2235-2244.	2.9	135
71	Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cellular Microbiology, 2000, 2, 115-126.	2.1	107
72	Cyclooxygenase-2 Expression in Macrophages: Modulation by Protein Kinase C-α. Journal of Immunology, 2000, 165, 3985-3991.	0.8	102

#	Article	IF	CITATION
73	Protein Kinase C- $\hat{1}$ ± Participates in Fc $\hat{1}$ 3R-Mediated Phagocytosis in Macrophages. Biochemical and Biophysical Research Communications, 2000, 276, 472-476.	2.1	52
74	Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cellular Microbiology, 1999, 1, 19-32.	2.1	154
75	Glycoconjugates in Leishmania infectivity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1999, 1455, 341-352.	3.8	190
76	Phagocytosis of Leishmania. Advances in Cellular and Molecular Biology of Membranes and Organelles, 1999, 6, 297-316.	0.3	2
77	Leishmania donovani has distinct mannosylphosphoryltransferases for the initiation and elongation phases of lipophosphoglycan repeating unit biosynthesis. Molecular and Biochemical Parasitology, 1998, 94, 27-40.	1.1	23
78	Survival strategies of Leishmania donovani in mammalian host macrophages. Research in Immunology, 1998, 149, 689-692.	0.9	27
79	Protein Kinase C-α Modulates Lipopolysaccharide-induced Functions in a Murine Macrophage Cell Line. Journal of Biological Chemistry, 1998, 273, 32787-32792.	3.4	98
80	Inhibition of Phagolysosomal Biogenesis by the Leishmania Lipophosphoglycan. Journal of Experimental Medicine, 1997, 185, 2061-2068.	8.5	263
81	A specialized pathway affecting virulence glycoconjugates of Leishmania. Science, 1995, 269, 1869-1872.	12.6	158
82	Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8609-8613.	7.1	130
83	The Lipophosphoglycan of Leishmania Parasites. Annual Review of Microbiology, 1992, 46, 65-92.	7.3	471
84	Regulation of cell division in Escherichia coli K-12: probable interactions among proteins FtsQ, FtsA, and FtsZ. Journal of Bacteriology, 1987, 169, 1938-1942.	2.2	42