Cheng-Feng Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2697366/publications.pdf Version: 2024-02-01

		18479	13375
290	21,270	62	130
papers	citations	h-index	g-index
321	321	321	30360
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582, 289-293.	27.8	3,133
2	Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 2020, 369, 77-81.	12.6	1,180
3	Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. Cell, 2020, 182, 73-84.e16.	28.9	1,139
4	Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity, 2020, 52, 971-977.e3.	14.3	979
5	Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science, 2020, 369, 1603-1607.	12.6	678
6	Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell, 2016, 19, 120-126.	11.1	614
7	A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host and Microbe, 2020, 28, 124-133.e4.	11.0	540
8	A Thermostable mRNA Vaccine against COVID-19. Cell, 2020, 182, 1271-1283.e16.	28.9	485
9	Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody. Cell Host and Microbe, 2016, 19, 696-704.	11.0	426
10	A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science, 2017, 358, 933-936.	12.6	399
11	Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science, 2020, 369, 1505-1509.	12.6	358
12	Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell, 2016, 167, 1511-1524.e10.	28.9	331
13	Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature, 2017, 545, 482-486.	27.8	318
14	25-Hydroxycholesterol Protects Host against Zika Virus Infection and Its Associated Microcephaly in a Mouse Model. Immunity, 2017, 46, 446-456.	14.3	276
15	Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Research, 2016, 26, 645-654.	12.0	254
16	Structures and Receptor Binding of Hemagglutinins from Human-Infecting H7N9 Influenza Viruses. Science, 2013, 342, 243-247.	12.6	237
17	HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nature Metabolism, 2020, 2, 1391-1400.	11.9	207
18	Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell, 2016, 19, 672.	11.1	164

#	Article	IF	CITATIONS
19	Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins. Cell Stem Cell, 2017, 21, 349-358.e6.	11.1	163
20	Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Research, 2017, 27, 1046-1064.	12.0	153
21	A Broadly Flavivirus Cross-Neutralizing Monoclonal Antibody that Recognizes a Novel Epitope within the Fusion Loop of E Protein. PLoS ONE, 2011, 6, e16059.	2.5	151
22	Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature, 2022, 603, 919-925.	27.8	146
23	Chloroquine, a FDA-approved Drug, Prevents Zika Virus Infection and its Associated Congenital Microcephaly in Mice. EBioMedicine, 2017, 24, 189-194.	6.1	144
24	COMRADES determines in vivo RNA structures and interactions. Nature Methods, 2018, 15, 785-788.	19.0	143
25	Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7619-7624.	7.1	134
26	A potent broad-spectrum protective human monoclonal antibody crosslinking two haemagglutinin monomers of influenza A virus. Nature Communications, 2015, 6, 7708.	12.8	124
27	Adenosine Analog NITD008 Is a Potent Inhibitor of Zika Virus. Open Forum Infectious Diseases, 2016, 3, ofw175.	0.9	124
28	Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Research, 2021, 31, 732-741.	12.0	124
29	Characterization of a 2016 Clinical Isolate of Zika Virus in Non-human Primates. EBioMedicine, 2016, 12, 170-177.	6.1	118
30	Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nature Communications, 2017, 8, 14.	12.8	117
31	A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nature Communications, 2017, 8, 15672.	12.8	115
32	Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Research, 2019, 29, 265-273.	12.0	115
33	Human Virus-Derived Small RNAs Can Confer Antiviral Immunity in Mammals. Immunity, 2017, 46, 992-1004.e5.	14.3	114
34	Virus Capture and Destruction by Labelâ€Free Graphene Oxide for Detection and Disinfection Applications. Small, 2015, 11, 1171-1176.	10.0	113
35	<i>Culex pipiens quinquefasciatus</i> : a potential vector to transmit Zika virus. Emerging Microbes and Infections, 2016, 5, 1-5.	6.5	112
36	Flavivirus RNA methylation. Journal of General Virology, 2014, 95, 763-778.	2.9	107

#	Article	IF	CITATIONS
37	Genomic and antigenic characterization of the newly emerging Chinese duck egg-drop syndrome flavivirus: genomic comparison with Tembusu and Sitiawan viruses. Journal of General Virology, 2012, 93, 2158-2170.	2.9	103
38	Genomic characterization and phylogenetic analysis of Zika virus circulating in the Americas. Infection, Genetics and Evolution, 2016, 43, 43-49.	2.3	103
39	The evolution of Zika virus from AsiaÂto the Americas. Nature Reviews Microbiology, 2019, 17, 131-139.	28.6	103
40	Rational Design of a Live Attenuated Dengue Vaccine: 2′-O-Methyltransferase Mutants Are Highly Attenuated and Immunogenic in Mice and Macaques. PLoS Pathogens, 2013, 9, e1003521.	4.7	98
41	The m6A methylome of SARS-CoV-2 in host cells. Cell Research, 2021, 31, 404-414.	12.0	95
42	Isolation, identification and genomic characterization of the Asian lineage Zika virus imported to China. Science China Life Sciences, 2016, 59, 428-430.	4.9	93
43	25-Hydroxycholesterol is a potent SARS-CoV-2 inhibitor. Cell Research, 2020, 30, 1043-1045.	12.0	91
44	Characterization of two distinct neuraminidases from avian-origin human-infecting H7N9 influenza viruses. Cell Research, 2013, 23, 1347-1355.	12.0	89
45	Integrative Analysis of Zika Virus Genome RNA Structure Reveals Critical Determinants of Viral Infectivity. Cell Host and Microbe, 2018, 24, 875-886.e5.	11.0	89
46	Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2. Nature Communications, 2021, 12, 5654.	12.8	89
47	Transmission-Blocking Antibodies against Mosquito C-Type Lectins for Dengue Prevention. PLoS Pathogens, 2014, 10, e1003931.	4.7	87
48	<i>PARP12</i> suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins. Science Signaling, 2018, 11, .	3.6	86
49	Excretion of infectious Zika virus in urine. Lancet Infectious Diseases, The, 2016, 16, 641-642.	9.1	85
50	Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 2017, 20, 1209-1212.	14.8	85
51	Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nature Communications, 2018, 9, 673.	12.8	84
52	A single nucleotide mutation in NS2A of Japanese encephalitis-live vaccine virus (SA14-14-2) ablates NS1' formation and contributes to attenuation. Journal of General Virology, 2012, 93, 1959-1964.	2.9	83
53	Azithromycin Protects against Zika Virus Infection by Upregulating Virus-Induced Type I and III Interferon Responses. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	83
54	Rational Design of a Flavivirus Vaccine by Abolishing Viral RNA 2′- <i>O</i> Methylation. Journal of Virology, 2013, 87, 5812-5819.	3.4	81

#	Article	IF	CITATIONS
55	Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-β receptor. Nature Immunology, 2018, 19, 342-353.	14.5	81
56	Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. ELife, 2016, 5, .	6.0	79
57	Rational development of a human antibody cocktail that deploys multiple functions to confer Pan-SARS-CoVs protection. Cell Research, 2021, 31, 25-36.	12.0	76
58	Structure-based development of human antibody cocktails against SARS-CoV-2. Cell Research, 2021, 31, 101-103.	12.0	75
59	Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine, 2013, 31, 3281-3287.	3.8	74
60	Treatment of Human Glioblastoma with a Live Attenuated Zika Virus Vaccine Candidate. MBio, 2018, 9, .	4.1	74
61	Novel <i>cis</i> -Acting Element within the Capsid-Coding Region Enhances Flavivirus Viral-RNA Replication by Regulating Genome Cyclization. Journal of Virology, 2013, 87, 6804-6818.	3.4	72
62	Hand, foot, and mouth disease outbreak caused by coxsackievirus A6, China, 2013. Journal of Infection, 2014, 69, 303-305.	3.3	69
63	Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone. PLoS Pathogens, 2015, 11, e1005067.	4.7	68
64	Severe dengue outbreak in Yunnan, China, 2013. International Journal of Infectious Diseases, 2014, 27, 4-6.	3.3	64
65	Antibody dependent enhancement infection of Enterovirus 71 in vitro and in vivo. Virology Journal, 2011, 8, 106.	3.4	62
66	Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Research, 2018, 150, 217-225.	4.1	61
67	Delineating antibody recognition against Zika virus during natural infection. JCI Insight, 2017, 2, .	5.0	61
68	Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Science Advances, 2020, 6, eaax7989.	10.3	60
69	Hydrated Silica Exterior Produced by Biomimetic Silicification Confers Viral Vaccine Heat-Resistance. ACS Nano, 2015, 9, 799-808.	14.6	59
70	Biomineralizationâ€Based Virus Shellâ€Engineering: Towards Neutralization Escape and Tropism Expansion. Advanced Healthcare Materials, 2012, 1, 443-449.	7.6	57
71	A Chimeric Dengue Virus Vaccine using Japanese Encephalitis Virus Vaccine Strain SA14-14-2 as Backbone Is Immunogenic and Protective against Either Parental Virus in Mice and Nonhuman Primates. Journal of Virology, 2013, 87, 13694-13705.	3.4	53
72	Human Enterovirus 71 Uncoating Captured at Atomic Resolution. Journal of Virology, 2014, 88, 3114-3126.	3.4	53

#	Article	IF	CITATIONS
73	Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase. Nucleic Acids Research, 2019, 47, 8693-8707.	14.5	52
74	A Unique and Conserved Neutralization Epitope in H5N1 Influenza Viruses Identified by an Antibody against the A/Goose/Guangdong/1/96 Hemagglutinin. Journal of Virology, 2013, 87, 12619-12635.	3.4	51
75	Eggshellâ€Inspired Biomineralization Generates Vaccines that Do Not Require Refrigeration. Angewandte Chemie - International Edition, 2012, 51, 10576-10579.	13.8	50
76	Determinants of Dengue Virus NS4A Protein Oligomerization. Journal of Virology, 2015, 89, 6171-6183.	3.4	48
77	Vector competence and transovarial transmission of two <i>Aedes aegypti</i> strains to Zika virus. Emerging Microbes and Infections, 2017, 6, 1-7.	6.5	48
78	Intranasal infection and contact transmission of Zika virus in guinea pigs. Nature Communications, 2017, 8, 1648.	12.8	47
79	American Strain of Zika Virus Causes More Severe Microcephaly Than an Old Asian Strain in Neonatal Mice. EBioMedicine, 2017, 25, 95-105.	6.1	47
80	Disruption of glial cell development by Zika virus contributes to severe microcephalic newborn mice. Cell Discovery, 2018, 4, 43.	6.7	47
81	SARS-CoV-2 infection in the mouse olfactory system. Cell Discovery, 2021, 7, 49.	6.7	47
82	Targeting of Dicer-2 and RNA by a Viral RNA Silencing Suppressor in Drosophila Cells. Journal of Virology, 2012, 86, 5763-5773.	3.4	46
83	Vaccine Engineering with Dualâ€Functional Mineral Shell: A Promising Strategy to Overcome Preexisting Immunity. Advanced Materials, 2016, 28, 694-700.	21.0	46
84	Characterization of <i>cis</i> -Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone. Journal of Virology, 2017, 91, .	3.4	46
85	Human IgG Subclasses against Enterovirus Type 71: Neutralization versus Antibody Dependent Enhancement of Infection. PLoS ONE, 2013, 8, e64024.	2.5	45
86	Safety and immunogenicity of the SARS-CoV-2 ARCoV mRNA vaccine in Chinese adults: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Microbe, The, 2022, 3, e193-e202.	7.3	45
87	Induction of Tetravalent Protective Immunity Against Four Dengue Serotypes by the Tandem Domain III of the Envelope Protein. DNA and Cell Biology, 2007, 26, 361-367.	1.9	44
88	Structural basis for neutralization of Japanese encephalitis virus by two potent therapeutic antibodies. Nature Microbiology, 2018, 3, 287-294.	13.3	42
89	Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nature Communications, 2019, 10, 1324.	12.8	41
90	Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. Journal of General Virology, 2014, 95, 806-815.	2.9	40

#	Article	IF	CITATIONS
91	Novel recombinant chimeric virus-like particle is immunogenic and protective against both enterovirus 71 and coxsackievirus A16 in mice. Scientific Reports, 2015, 5, 7878.	3.3	40
92	Differential antiviral immunity to Japanese encephalitis virus in developing cortical organoids. Cell Death and Disease, 2018, 9, 719.	6.3	40
93	Characterization of enterovirus 71 and coxsackievirus A16 isolated in hand, foot, and mouth disease patients in Guangdong, 2010. International Journal of Infectious Diseases, 2013, 17, e1025-e1030.	3.3	39
94	The Emerging Duck Flavivirus Is Not Pathogenic for Primates and Is Highly Sensitive to Mammalian Interferon Antiviral Signaling. Journal of Virology, 2016, 90, 6538-6548.	3.4	39
95	Transfer of convalescent serum to pregnant mice prevents Zika virus infection and microcephaly in offspring. Cell Research, 2017, 27, 158-160.	12.0	39
96	Zika NS1–induced ER remodeling is essential for viral replication. Journal of Cell Biology, 2020, 219, .	5.2	39
97	Parallel mRNA and MicroRNA Profiling of HEV71-Infected Human Neuroblastoma Cells Reveal the Up-Regulation of miR-1246 in Association with DLG3 Repression. PLoS ONE, 2014, 9, e95272.	2.5	38
98	Virus-like particles produced in Saccharomyces cerevisiae elicit protective immunity against Coxsackievirus A16 in mice. Applied Microbiology and Biotechnology, 2013, 97, 10445-10452.	3.6	37
99	GP73 is a glucogenic hormone contributing to SARS-CoV-2-induced hyperglycemia. Nature Metabolism, 2022, 4, 29-43.	11.9	37
100	Rapid development of an updated mRNA vaccine against the SARS-CoV-2 Omicron variant. Cell Research, 2022, 32, 401-403.	12.0	37
101	Recombination of Human Coxsackievirus B5 in Hand, Foot, and Mouth Disease Patients, China. Emerging Infectious Diseases, 2012, 18, 351-353.	4.3	36
102	A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. National Science Review, 2021, 8, nwab053.	9.5	36
103	Biomineralized vaccine nanohybrid for needle-free intranasal immunization. Biomaterials, 2016, 106, 286-294.	11.4	35
104	RNA elements within the 5' untranslated region of the West Nile virus genome are critical for RNA synthesis and virus replication. Journal of General Virology, 2010, 91, 1218-1223.	2.9	34
105	Development of RT-LAMP and real-time RT-PCR assays for the rapid detection of the new duck Tembusu-like BYD virus. Archives of Virology, 2012, 157, 2273-2280.	2.1	34
106	KDEL Receptors Assist Dengue Virus Exit from the Endoplasmic Reticulum. Cell Reports, 2015, 10, 1496-1507.	6.4	34
107	Epidemiological and Virological Characterizations of the 2014 Dengue Outbreak in Guangzhou, China. PLoS ONE, 2016, 11, e0156548.	2.5	34
108	Zika virus degrades the ω-3 fatty acid transporter Mfsd2a in brain microvascular endothelial cells and impairs lipid homeostasis. Science Advances, 2019, 5, eaax7142.	10.3	34

#	Article	IF	CITATIONS
109	Persistent Viral Presence Determines the Clinical Course of the Disease in COVID-19. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2585-2591.e1.	3.8	34
110	Attenuated dengue 2 viruses with deletions in capsid protein derived from an infectious full-length cDNA clone. Virus Research, 2007, 126, 226-232.	2.2	33
111	Co-circulation of two genotypes of dengue virus serotype 3 in Guangzhou, China, 2009. Virology Journal, 2012, 9, 125.	3.4	33
112	TLR3 Signaling in Macrophages Is Indispensable for the Protective Immunity of Invariant Natural Killer T Cells against Enterovirus 71 Infection. PLoS Pathogens, 2015, 11, e1004613.	4.7	33
113	Human MxB Inhibits the Replication of Hepatitis C Virus. Journal of Virology, 2019, 93, .	3.4	33
114	Long non oding subgenomic flavivirus RNAs have extended 3D structures and are flexible in solution. EMBO Reports, 2019, 20, e47016.	4.5	33
115	A broadly neutralizing germline-like human monoclonal antibody against dengue virus envelope domain III. PLoS Pathogens, 2019, 15, e1007836.	4.7	32
116	Translational Regulation by the 3′ Untranslated Region of the Dengue Type 2 Virus Genome. American Journal of Tropical Medicine and Hygiene, 2009, 81, 817-824.	1.4	31
117	Identification and characterization of small sub-genomic RNAs in dengue 1–4 virus-infected cell cultures and tissues. Biochemical and Biophysical Research Communications, 2010, 391, 1099-1103.	2.1	31
118	Characterization of live-attenuated Japanese encephalitis vaccine virus SA14-14-2. Vaccine, 2014, 32, 2675-2681.	3.8	31
119	Visualization of a neurotropic flavivirus infection in mouse reveals unique viscerotropism controlled by host type I interferon signaling. Theranostics, 2017, 7, 912-925.	10.0	31
120	Identification of a recombinant dengue virus type 1 with 3 recombination regions in natural populations in Guangdong province, China. Archives of Virology, 2008, 153, 1175-9.	2.1	30
121	Producing infectious enterovirus type 71 in a rapid strategy. Virology Journal, 2010, 7, 116.	3.4	30
122	Isolation and characterization of dengue virus serotype 2 from the large dengue outbreak in Guangdong, China in 2014. Science China Life Sciences, 2014, 57, 1149-1155.	4.9	30
123	Immunization with truncated envelope protein of Zika virus induces protective immune response in mice. Scientific Reports, 2017, 7, 10047.	3.3	30
124	Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein. Proceedings of the United States of America, 2021, 118, .	7.1	30
125	Development and Evaluation of a Reverse Transcription-Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Enterovirus 71. Journal of Clinical Microbiology, 2011, 49, 870-874.	3.9	29
126	Recombinant chimeric Japanese encephalitis virus/tick-borne encephalitis virus is attenuated and protective in mice. Vaccine, 2014, 32, 949-956.	3.8	29

#	Article	IF	CITATIONS
127	The kinase CK1É› controls the antiviral immune response by phosphorylating the signaling adaptor TRAF3. Nature Immunology, 2016, 17, 397-405.	14.5	29
128	Establishment of replication-competent vesicular stomatitis virus-based recombinant viruses suitable for SARS-CoV-2 entry and neutralization assays. Emerging Microbes and Infections, 2020, 9, 2269-2277.	6.5	29
129	Impaired Cellular Immunity to SARS-CoV-2 in Severe COVID-19 Patients. Frontiers in Immunology, 2021, 12, 603563.	4.8	29
130	Long-term stability and protection efficacy of the RBD-targeting COVID-19 mRNA vaccine in nonhuman primates. Signal Transduction and Targeted Therapy, 2021, 6, 438.	17.1	29
131	Zika NS2B is a crucial factor recruiting NS3 to the ER and activating its protease activity. Virus Research, 2020, 275, 197793.	2.2	28
132	Suppression of the Epidermal Growth Factor Receptor Inhibits Epithelial–Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells. Digestive Diseases and Sciences, 2012, 57, 1181-1189.	2.3	27
133	Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus. Acta Tropica, 2013, 128, 566-570.	2.0	27
134	A bispecific antibody effectively neutralizes all four serotypes of dengue virus by simultaneous blocking virus attachment and fusion. MAbs, 2016, 8, 574-584.	5.2	27
135	Robust vaccine formulation produced by assembling a hybrid coating of polyethyleneimine–silica. Chemical Science, 2016, 7, 1753-1759.	7.4	27
136	Machine Learning Methods for Predicting Human-Adaptive Influenza A Viruses Based on Viral Nucleotide Compositions. Molecular Biology and Evolution, 2020, 37, 1224-1236.	8.9	27
137	The Nonstructural Protein 2C of a Picorna-Like Virus Displays Nucleic Acid Helix Destabilizing Activity That Can Be Functionally Separated from Its ATPase Activity. Journal of Virology, 2013, 87, 5205-5218.	3.4	26
138	Induction of Neutralizing Antibodies against Four Serotypes of Dengue Viruses by MixBiEDIII, a Tetravalent Dengue Vaccine. PLoS ONE, 2014, 9, e86573.	2.5	26
139	Infectivity of Zika virus on primary cells support tree shrew as animal model. Emerging Microbes and Infections, 2019, 8, 232-241.	6.5	26
140	Global Transcriptomic Analysis of Human Neuroblastoma Cells in Response to Enterovirus Type 71 Infection. PLoS ONE, 2013, 8, e65948.	2.5	26
141	Presence of Highâ€Titer Neutralizing Antibodies against Enterovirus 71 in Intravenous Immunoglobulin Manufactured from Chinese Donors. Clinical Infectious Diseases, 2010, 50, 125-126.	5.8	25
142	CpG oligodeoxynucleotides protect against the 2009 H1N1 pandemic influenza virus infection in a murine model. Antiviral Research, 2011, 89, 124-126.	4.1	25
143	Generation of a recombinant West Nile virus stably expressing the Gaussia luciferase for neutralization assay. Virus Research, 2016, 211, 17-24.	2.2	25
144	Development of a real-time RT-PCR assay for a novel influenza A (H1N1) virus. Journal of Virological Methods, 2010, 163, 470-473.	2.1	24

#	Article	IF	CITATIONS
145	In vitro and in vivo characterization of a new enterovirus type 71-specific human intravenous immunoglobulin manufactured from selected plasma donors. Journal of Clinical Virology, 2011, 51, 246-249.	3.1	24
146	Development and characterization of the replicon system of Japanese encephalitis live vaccine virus SA14-14-2. Virology Journal, 2013, 10, 64.	3.4	24
147	Development of an automatic integrated gene detection system for novel severe acute respiratory syndrome-related coronavirus (SARS-CoV2). Emerging Microbes and Infections, 2020, 9, 1489-1496.	6.5	24
148	Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. National Science Review, 2021, 8, nwaa297.	9.5	24
149	Treatment of SARS-CoV-2-induced pneumonia with NAD+ and NMN in two mouse models. Cell Discovery, 2022, 8, 38.	6.7	24
150	Axl Deficiency Promotes the Neuroinvasion of Japanese Encephalitis Virus by Enhancing IL-1α Production from Pyroptotic Macrophages. Journal of Virology, 2020, 94, .	3.4	23
151	Development of Rapid Immunochromatographic Test for Hemagglutinin Antigen of H7 Subtype in Patients Infected with Novel Avian Influenza A (H7N9) Virus. PLoS ONE, 2014, 9, e92306.	2.5	23
152	Aedes aegypti HPX8C modulates immune responses against viral infection. PLoS Neglected Tropical Diseases, 2019, 13, e0007287.	3.0	22
153	In Vitro Characterization of Human Adenovirus Type 55 in Comparison with Its Parental Adenoviruses, Types 11 and 14. PLoS ONE, 2014, 9, e100665.	2.5	21
154	A cypovirus VP5 displays the RNA chaperone-like activity that destabilizes RNA helices and accelerates strand annealing. Nucleic Acids Research, 2014, 42, 2538-2554.	14.5	21
155	Recombinant tandem multi-linear neutralizing epitopes of human enterovirus 71 elicited protective immunity in mice. Virology Journal, 2014, 11, 79.	3.4	21
156	Development of Neutralization Assay Using an eGFP Chikungunya Virus. Viruses, 2016, 8, 181.	3.3	21
157	Structure and function of <i>cis</i> â€acting RNA elements of flavivirus. Reviews in Medical Virology, 2020, 30, e2092.	8.3	21
158	Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein. Signal Transduction and Targeted Therapy, 2021, 6, 389.	17.1	21
159	Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Research, 2022, 32, 375-382.	12.0	21
160	Type I Interferons Triggered through the Toll-Like Receptor 3–TRIF Pathway Control Coxsackievirus A16 Infection in Young Mice. Journal of Virology, 2015, 89, 10860-10867.	3.4	20
161	Functional Singleâ€Virus–Polyelectrolyte Hybrids Make Largeâ€5cale Applications of Viral Nanoparticles More Efficient. Small, 2010, 6, 351-354.	10.0	19
162	Development of a Double Antibody Sandwich ELISA for West Nile Virus Detection Using Monoclonal Antibodies against Non-Structural Protein 1. PLoS ONE, 2014, 9, e108623.	2.5	19

#	Article	IF	CITATIONS
163	Zika Virus Infection in Tupaia belangeri Causes Dermatological Manifestations and Confers Protection against Secondary Infection. Journal of Virology, 2019, 93, .	3.4	19
164	Upregulation of MicroRNA miR-9 Is Associated with Microcephaly and Zika Virus Infection in Mice. Molecular Neurobiology, 2019, 56, 4072-4085.	4.0	19
165	Identification and characterization of a virus-specific continuous B-cell epitope on the PrM/M protein of Japanese Encephalitis Virus: potential application in the detection of antibodies to distinguish Japanese Encephalitis Virus infection from West Nile Virus and Dengue Virus infections. Virology Journal. 2010. 7. 249.	3.4	18
166	Retinoic acid inducible gene-I and melanoma differentiation-associated gene 5 are induced but not essential for dengue virus induced type I interferon response. Molecular Biology Reports, 2011, 38, 3867-3873.	2.3	18
167	Alumina-encapsulated vaccine formulation with improved thermostability and immunogenicity. Chemical Communications, 2016, 52, 6447-6450.	4.1	18
168	Biomimetic inorganic camouflage circumvents antibody-dependent enhancement of infection. Chemical Science, 2017, 8, 8240-8246.	7.4	18
169	Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annual Review of Virology, 2019, 6, 459-479.	6.7	18
170	Complete Genome Sequence of a Chikungunya Virus Isolated in Guangdong, China. Journal of Virology, 2012, 86, 8904-8905.	3.4	17
171	Development of chimaeric West Nile virus attenuated vaccine candidate based on the Japanese encephalitis vaccine strain SA14-14-2. Journal of General Virology, 2013, 94, 2700-2709.	2.9	17
172	Crystal Structures of Enterovirus 71 (EV71) Recombinant Virus Particles Provide Insights into Vaccine Design. Journal of Biological Chemistry, 2015, 290, 3198-3208.	3.4	17
173	Longitudinal dynamics of antibody responses in recovered COVID-19 patients. Signal Transduction and Targeted Therapy, 2021, 6, 137.	17.1	17
174	Transient acquisition of cross-species infectivity during the evolution of SARS-CoV-2. National Science Review, 2021, 8, nwab167.	9.5	17
175	Oncolytic Zika virus promotes intratumoral T cell infiltration and improves immunotherapy efficacy in glioblastoma. Molecular Therapy - Oncolytics, 2022, 24, 522-534.	4.4	17
176	A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus. Virology Journal, 2010, 7, 113.	3.4	16
177	Phage Displayed Peptides to Avian H5N1 Virus Distinguished the Virus from Other Viruses. PLoS ONE, 2011, 6, e23058.	2.5	16
178	Development of reverse-transcription loop-mediated isothermal amplification assay for rapid detection of novel avian influenza A (H7N9) virus. BMC Microbiology, 2014, 14, 271.	3.3	16
179	Newcastle disease virus-vectored West Nile fever vaccine is immunogenic in mammals and poultry. Virology Journal, 2016, 13, 109.	3.4	16
180	Expression pattern and function of SARS-CoV-2 receptor ACE2. Biosafety and Health, 2021, 3, 312-318.	2.7	16

#	Article	IF	CITATIONS
181	In vitro and in vivo characterization of chimeric duck Tembusu virus based on Japanese encephalitis live vaccine strain SA14-14-2. Journal of General Virology, 2016, 97, 1551-1556.	2.9	16
182	Echovirus 30 in EV71-associated hand, foot and mouth disease outbreak, Guangxi, China. Journal of Clinical Virology, 2011, 50, 348-349.	3.1	15
183	Complete genome sequence analysis of tick-borne encephalitis viruses isolated in northeastern China. Archives of Virology, 2011, 156, 1485-1488.	2.1	15
184	Cross protection against lethal West Nile virus challenge in mice immunized with recombinant E protein domain III of Japanese encephalitis virus. Immunology Letters, 2011, 138, 156-160.	2.5	15
185	Dengue in China: not a passing problem. Science China Life Sciences, 2014, 57, 1230-1231.	4.9	15
186	Human enterovirus co-infection in severe HFMD patients in China. Journal of Clinical Virology, 2014, 61, 621-622.	3.1	15
187	Characterization of the contemporary Zika virus in immunocompetent mice. Human Vaccines and Immunotherapeutics, 2016, 12, 3107-3109.	3.3	15
188	Zika virus: a new threat from mosquitoes. Science China Life Sciences, 2016, 59, 440-442.	4.9	15
189	Convergent evolution of SARS-CoV-2 in human and animals. Protein and Cell, 2021, 12, 832-835.	11.0	15
190	Recovery of the Zika virus through an in vitro ligation approach. Journal of General Virology, 2017, 98, 1739-1743.	2.9	15
191	Zika virus shedding in the stool and infection through the anorectal mucosa in mice. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	14
192	Genomic analysis of HAdV-B14 isolate from the outbreak of febrile respiratory infection in China. Genomics, 2013, 102, 448-455.	2.9	13
193	A novel reporter system for neutralizing and enhancing antibody assay against dengue virus. BMC Microbiology, 2014, 14, 44.	3.3	13
194	Development and characterization of a clinical strain of Coxsackievirus A16 and an eGFP infectious clone. Virologica Sinica, 2015, 30, 269-276.	3.0	13
195	Dengue Specific Immunoglobulin A Antibody is Present in Urine and Associated with Disease Severity. Scientific Reports, 2016, 6, 27298.	3.3	13
196	Generation and characterization of West Nile pseudo-infectious reporter virus for antiviral screening. Antiviral Research, 2017, 141, 38-47.	4.1	13
197	Proteome-wide epitope mapping identifies a resource of antibodies for SARS-CoV-2 detection and neutralization. Signal Transduction and Targeted Therapy, 2021, 6, 166.	17.1	13
198	A DNA-based West Nile virus replicon elicits humoral and cellular immune responses in mice. Journal of Virological Methods, 2011, 178, 87-93.	2.1	12

#	Article	IF	CITATIONS
199	Complete Genome Sequence of a Dengue Virus Serotype 4 Strain Isolated in Guangdong, China. Journal of Virology, 2012, 86, 7021-7022.	3.4	12
200	Complete Genome Sequence of Dengue Virus Serotype 2 Cosmopolitan Genotype Strain in Guangdong, China. Journal of Virology, 2012, 86, 13808-13809.	3.4	12
201	Japanese Encephalitis Virus RNA Not Detected in Urine. Clinical Infectious Diseases, 2013, 57, 157-158.	5.8	12
202	Intracellular delivery of biomineralized monoclonal antibodies to combat viral infection. Chemical Communications, 2016, 52, 1879-1882.	4.1	12
203	Phylogenetic and genetic characterization of a 2017 clinical isolate of H7N9 virus in Guangzhou, China during the fifth epidemic wave. Science China Life Sciences, 2017, 60, 1331-1339.	4.9	12
204	Visualization of chikungunya virus infection <i>in vitro</i> and <i>in vivo</i> . Emerging Microbes and Infections, 2019, 8, 1574-1583.	6.5	12
205	Type-IInterferon-Inducible SERTAD3 Inhibits Influenza A Virus Replication by Blocking the Assembly of Viral RNA Polymerase Complex. Cell Reports, 2020, 33, 108342.	6.4	12
206	Different Gene Networks Are Disturbed by Zika Virus Infection in A Mouse Microcephaly Model. Genomics, Proteomics and Bioinformatics, 2020, 18, 737-748.	6.9	12
207	Comparative characterization of SARS oVâ€⊋ variants of concern and mouseâ€∎dapted strains in mice. Journal of Medical Virology, 2022, 94, 3223-3232.	5.0	12
208	The SARS-CoV-2 B.1.351 Variant Can Transmit in Rats But Not in Mice. Frontiers in Immunology, 2022, 13, 869809.	4.8	12
209	Safety and superior immunogenicity of heterologous boosting with an RBD-based SARS-CoV-2 mRNA vaccine in Chinese adults. Cell Research, 2022, 32, 777-780.	12.0	12
210	Prokaryotic expression and purification of HA1 and HA2 polypeptides for serological analysis of the 2009 pandemic H1N1 influenza virus. Journal of Virological Methods, 2011, 172, 16-21.	2.1	11
211	Noninvasive bioluminescence imaging of dengue virus infection in the brain of A129 mice. Applied Microbiology and Biotechnology, 2013, 97, 4589-4596.	3.6	11
212	Phenotypic and genomic characterization of human coxsackievirus A16 strains with distinct virulence in mice. Virus Research, 2014, 179, 212-219.	2.2	11
213	Generation and characterization of a protective mouse monoclonal antibody against human enterovirus 71. Applied Microbiology and Biotechnology, 2015, 99, 7663-7671.	3.6	11
214	Short Direct Repeats in the 3′ Untranslated Region Are Involved in Subgenomic Flaviviral RNA Production. Journal of Virology, 2020, 94, .	3.4	11
215	Rational Development of a Polysaccharide–Proteinâ€Conjugated Nanoparticle Vaccine Against SARSâ€CoVâ€2 Variants and <i>Streptococcus pneumoniae</i> . Advanced Materials, 2022, 34, e2200443.	21.0	11
216	Therapeutic effects of dengue 2 virus capsid protein and staphylococcal nuclease fusion protein on dengue-infected cell cultures. Archives of Virology, 2005, 150, 659-669.	2.1	10

#	Article	IF	CITATIONS
217	Serum Antibody Response to the Novel Influenza A (H1N1) Virus in the Elderly. Clinical Infectious Diseases, 2010, 50, 285-286.	5.8	10
218	Comprehensive mapping of a novel NS1 epitope conserved in flaviviruses within the Japanese encephalitis virus serocomplex. Virus Research, 2014, 185, 103-109.	2.2	10
219	The importation of the phylogenetic-transition state of Zika virus to China in 2014. Journal of Infection, 2018, 76, 106-109.	3.3	10
220	A single-dose live attenuated chimeric vaccine candidate against Zika virus. Npj Vaccines, 2021, 6, 20.	6.0	10
221	Electrostatic Interaction Between NS1 and Negatively Charged Lipids Contributes to Flavivirus Replication Organelles Formation. Frontiers in Microbiology, 2021, 12, 641059.	3.5	10
222	hACE2 Fc-neutralization antibody cocktail provides synergistic protection against SARS-CoV-2 and its spike RBD variants. Cell Discovery, 2021, 7, 54.	6.7	10
223	Characterization of a Novel Dengue Serotype 4 Virus-Specific Neutralizing Epitope on the Envelope Protein Domain III. PLoS ONE, 2015, 10, e0139741.	2.5	10
224	Development of Cell Lines Stably Expressing Staphylococcal Nuclease Fused to Dengue 2 Virus Capsid Protein for CTVI. Acta Biochimica Et Biophysica Sinica, 2004, 36, 577-582.	2.0	9
225	U4 at the 3′ UTR of PB1 Segment of H5N1 Influenza Virus Promotes RNA Polymerase Activity and Contributes to Viral Pathogenicity. PLoS ONE, 2014, 9, e93366.	2.5	9
226	Homologous recombination of Zika viruses in the Americas. Journal of Infection, 2016, 73, 87-88.	3.3	9
227	Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China. Acta Tropica, 2016, 161, 86-90.	2.0	9
228	The pre-existing cellular immunity to Japanese encephalitis virus heterotypically protects mice from Zika virus infection. Science Bulletin, 2020, 65, 402-409.	9.0	9
229	Rational Design of a Replication ompetent and Inheritable Magnetic Viruses for Targeting Biomedical Applications. Small, 2020, 16, e2002435.	10.0	9
230	Protective Human Anti-Poxvirus Monoclonal Antibodies Are Generated from Rare Memory B Cells Isolated by Multicolor Antigen Tetramers. Vaccines, 2022, 10, 1084.	4.4	9
231	Improvement of the specificity of a panâ€viral microarray by using genusâ€specific oligonucleotides and reduction of interference by host genomes. Journal of Medical Virology, 2011, 83, 1624-1630.	5.0	8
232	Identification and characterization of a linearized B-cell epitope on the pr protein of dengue virus. Journal of General Virology, 2013, 94, 1510-1516.	2.9	8
233	Reduction of neutralization antibody against heterologous circulating strains in adults immunized with Japanese encephalitis live vaccine. Human Vaccines and Immunotherapeutics, 2014, 10, 2704-2705.	3.3	8
234	Zika Virus Infection Leads to Variable Defects in Multiple Neurological Functions and Behaviors in Mice and Children. Advanced Science, 2020, 7, 1901996.	11.2	8

#	Article	IF	CITATIONS
235	Identification of oligosaccharyltransferase as a host target for inhibition of SARS-CoV-2 and its variants. Cell Discovery, 2021, 7, 116.	6.7	8
236	Characterization of a candidate tetravalent vaccine based on 2'-O-methyltransferase mutants. PLoS ONE, 2018, 13, e0189262.	2.5	7
237	Susceptibility of Armigeres subalbatus Coquillett (Diptera: Culicidae) to Zika virus through oral and urine infection. PLoS Neglected Tropical Diseases, 2020, 14, e0008450.	3.0	7
238	Vector Competence and Vertical Transmission of Zika Virus in <i>Aedes albopictus</i> (Diptera:) Tj ETQq0 0 0 rg	BT/Overlo	ock ₇ 10 Tf 50 6
239	Generation and Characterization of a Nanobody Against SARS-CoV. Virologica Sinica, 2021, 36, 1484-1491.	3.0	7
240	An integrated rapid nucleic acid detection assay based on recombinant polymerase amplification for SARS-CoV-2. Virologica Sinica, 2022, 37, 138-141.	3.0	7
241	A novel algorithm to define infection tendencies in H1N1 cases in Mainland China. Infection, Genetics and Evolution, 2011, 11, 222-226.	2.3	6
242	Complete Genome Sequence of Seoul Virus Isolated from Rattus norvegicus in the Democratic People's Republic of Korea. Journal of Virology, 2012, 86, 13853-13853.	3.4	6
243	Evaluation and analysis of dengue virus enhancing and neutralizing activities using simple high-throughput assays. Applied Microbiology and Biotechnology, 2013, 97, 6503-6511.	3.6	6
244	A single residue in the αB helix of the E protein is critical for Zika virus thermostability. Emerging Microbes and Infections, 2018, 7, 1-15.	6.5	6
245	Japanese Encephalitis Virus Vaccination Elicits Cross-Reactive HLA-Class I-Restricted CD8 T Cell Response Against Zika Virus Infection. Frontiers in Immunology, 2020, 11, 577546.	4.8	6
246	Potential Vector Competence of Mosquitoes to Transmit Baiyangdian Virus, a New Tembusu-Related Virus in China. Vector-Borne and Zoonotic Diseases, 2020, 20, 541-546.	1.5	6
247	Visualization of yellow fever virus infection in mice using a bioluminescent reporter virus. Emerging Microbes and Infections, 2021, 10, 1739-1750.	6.5	6
248	Methods to Identify Immunogenic Peptides in SARS oVâ€2 Spike and Protective Monoclonal Antibodies in COVIDâ€19 Patients. Small Methods, 2021, 5, 2100058.	8.6	6
249	The Infection and Pathogenicity of SARS-CoV-2 Variant B.1.351 in hACE2 Mice. Virologica Sinica, 2021, 36, 1232-1235.	3.0	6
250	A single nonsynonymous mutation on ZIKV E protein-coding sequences leads to markedly increased neurovirulence in vivo. Virologica Sinica, 2022, 37, 115-126.	3.0	6
251	Severe dengue due to secondary DENV-1 infection in Mainland China. Journal of Clinical Virology, 2013, 57, 184-186.	3.1	5
252	Mouse lungâ€∎dapted mutation of E190G in hemagglutinin from H5N1 influenza virus contributes to attenuation in mice. Journal of Medical Virology, 2015, 87, 1816-1822.	5.0	5

#	Article	IF	CITATIONS
253	Genotype-specific neutralization determinants in envelope protein: implications for the improvement of Japanese encephalitis vaccine. Journal of General Virology, 2015, 96, 2165-2175.	2.9	5
254	Construction and characterization of UAA-controlled recombinant Zika virus by genetic code expansion. Science China Life Sciences, 2021, 64, 171-173.	4.9	5
255	Impact of Prior Infection on Severe Acute Respiratory Syndrome Coronavirus 2 Transmission in Syrian Hamsters. Frontiers in Microbiology, 2021, 12, 722178.	3.5	5
256	A highly immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 infection and transmission in hamsters. Innovation(China), 2022, 3, 100221.	9.1	5
257	Dengue Type Four Viruses with E-Glu345Lys Adaptive Mutation from MRC-5 Cells Induce Low Viremia but Elicit Potent Neutralizing Antibodies in Rhesus Monkeys. PLoS ONE, 2014, 9, e100130.	2.5	4
258	H5N1 influenza A virus with K193E and G225E double mutations in haemagglutinin is attenuated and immunogenic in mice. Journal of General Virology, 2015, 96, 2522-2530.	2.9	4
259	The Self-Interaction of a Nodavirus Replicase Is Enhanced by Mitochondrial Membrane Lipids. PLoS ONE, 2014, 9, e89628.	2.5	4
260	Of Mice and Children: Zika Virus Infection Leads to Variable Defects in Multiple Neurological Functions and Behaviors. SSRN Electronic Journal, 0, , .	0.4	4
261	Antibody engineering improves neutralization activity against K417 spike mutant SARS-CoV-2 variants. Cell and Bioscience, 2022, 12, 63.	4.8	4
262	Ãngstrom-scale silver particles potently combat SARS-CoV-2 infection by suppressing the ACE2 expression and inflammatory responses. Journal of Materials Chemistry B, 2022, 10, 5454-5464.	5.8	4
263	Generation and Characterization of a Chimeric Tick-Borne Encephalitis Virus Attenuated Strain ChinTBEV. Methods in Molecular Biology, 2016, 1403, 285-293.	0.9	3
264	Recapitulating Zika Virus Infection in Vagina of Tree Shrew (Tupaia belangeri). Frontiers in Cellular and Infection Microbiology, 2021, 11, 687338.	3.9	3
265	Seasonal influenza vaccination may mitigate the potential impact of an H5N1 pandemic. Chinese Medical Journal, 2008, 121, 1481-1483.	2.3	2
266	Community Transmission of Pandemic Influenza A (H1N1) in China. Infection Control and Hospital Epidemiology, 2010, 31, 961-963.	1.8	2
267	Complete Genome Sequence of an Amur Virus Isolated from Apodemus peninsulae in Northeastern China. Journal of Virology, 2012, 86, 13816-13817.	3.4	2
268	Complete Genome Sequence Analysis of Human Echovirus Type 30 Isolated in China. Journal of Virology, 2012, 86, 13856-13857.	3.4	2
269	The RNA binding of protein A from Wuhan nodavirus is mediated by mitochondrial membrane lipids. Virology, 2014, 462-463, 1-13.	2.4	2
270	High thermostability of the newly emerged influenza A (H7N9) virus. Journal of Infection, 2016, 72, 393-394.	3.3	2

#	Article	IF	CITATIONS
271	Guidelines for the Diagnosis and Treatment of Dengue in China. Infectious Diseases & Immunity, 2021, Publish Ahead of Print, .	0.6	2
272	Development of a rapid neutralizing antibody test for SARS-CoV-2 and its application for neutralizing antibody screening and vaccinated serum testing. , 2022, , .		2
273	Additional Seasonal Influenza Virus Vaccinations for the 2009 H1N1 Pandemic. Vaccine Journal, 2010, 17, 887-888.	3.1	1
274	Methylprednisolone treatment fails to protect mice from the H5N1 influenza A virus-induced proinflammatory response and mortality. Journal of Infection, 2014, 69, 297-299.	3.3	1
275	Characterization of m ⁶ A modifications in the contemporary Zika virus genome and host cellular transcripts. Journal of Medical Virology, 2022, 94, 4309-4318.	5.0	1
276	Reverse spillover of SARS-CoV-2 from human to wild animals. Science China Life Sciences, 0, , .	4.9	1
277	Longitudinal Dynamics of Cellular Responses in Recovered COVID-19 Patients. Frontiers in Immunology, 0, 13, .	4.8	1
278	Neutralization of ARCoV-induced sera against SARS-CoV-2 variants. Human Vaccines and Immunotherapeutics, 2022, 18, .	3.3	1
279	The human gastrointestinal tract: Another target of the H5N1 influenza virus?. Medical Hypotheses, 2008, 70, 196-197.	1.5	Ο
280	PL-007 Cross-protection against West Nile virus in mice immunized with recombinant envelope protein domain III of Japanese encephalitis virus. International Journal of Infectious Diseases, 2010, 14, S13-S14.	3.3	0
281	Virusâ€Shell Engineering: Biomineralizationâ€Based Virus Shellâ€Engineering: Towards Neutralization Escape and Tropism Expansion (Adv. Healthcare Mater. 4/2012). Advanced Healthcare Materials, 2012, 1, 366-366.	7.6	0
282	Dengue vaccine development: challenges and emerging opportunities. Future Virology, 2014, 9, 231-234.	1.8	0
283	Old Master Zhu: in memory of virologist Guan-Fu Zhu. Protein and Cell, 2018, 9, 749-751.	11.0	0
284	Recovery and Genetic Characterization of a West Nile Virus Isolate from China. Virologica Sinica, 2021, 36, 113-121.	3.0	0
285	Advances in the study of congenital Zika syndrome and its pathogenesis. Chinese Science Bulletin, 2021, , .	0.7	Ο
286	Interplay between Zika virus and host type I interferon mediated immune response. Chinese Science Bulletin, 2018, 63, 495-501.	0.7	0
287	Visualization of Chikungunya Virus Infection <i>in vitro</i> and <i>in vivo</i> . SSRN Electronic Journal, O, , .	0.4	0
288	Advance in research on structure and functions of the nonstructural protein 5 of Zika virus. Chinese Science Bulletin, 2019, 64, 2677-2688.	0.7	0

#	Article	IF	CITATIONS
289	Title is missing!. , 2014, 9, e95272.		0
290	Rational Development of a Polysaccharide–Protein onjugated Nanoparticle Vaccine Against SARS oVâ€2 Variants and <i>Streptococcus pneumoniae</i> (Adv. Mater. 21/2022). Advanced Materials, 2022, 34, .	21.0	0