
Amaury Herpin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2696467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A nonfunctional copy of the salmonid sex-determining gene (<i>sdY</i>) is responsible for the "apparent―XY females in Chinook salmon, <i>Oncorhynchus tshawytscha</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	3
2	An ancient truncated duplication of the antiâ€Müllerian hormone receptor type 2 gene is a potential conserved master sex determinant in the Pangasiidae catfish family. Molecular Ecology Resources, 2022, 22, 2411-2428.	4.8	13
3	Diving into the Evolutionary History of HSC70-Linked Selective Autophagy Pathways: Endosomal Microautophagy and Chaperone-Mediated Autophagy. Cells, 2022, 11, 1945.	4.1	11
4	The rise and fall of the ancient northern pike master sex-determining gene. ELife, 2021, 10, .	6.0	24
5	RADSex: A computational workflow to study sex determination using restriction siteâ€associated DNA sequencing data. Molecular Ecology Resources, 2021, 21, 1715-1731.	4.8	40
6	Allelic diversification after transposable element exaptation promoted <i>gsdf</i> as the master sex determining gene of sablefish. Genome Research, 2021, 31, 1366-1380.	5.5	23
7	Evolution of master sex determiners: TGF-Î ² signalling pathways at regulatory crossroads. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200091.	4.0	60
8	The replaceable master of sex determination: bottom-up hypothesis revisited. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200090.	4.0	16
9	Lessons from an unusual vertebrate sex-determining gene. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200092.	4.0	26
10	Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200097.	4.0	43
11	A supernumerary "B-sex―chromosome drives male sex determination in the Pachón cavefish, Astyanax mexicanus. Current Biology, 2021, 31, 4800-4809.e9.	3.9	34
12	Characterization of a Yâ€specific duplication/insertion of the antiâ€Mullerian hormone type II receptor gene based on a chromosomeâ€scale genome assembly of yellow perch, <i>Perca flavescens</i> . Molecular Ecology Resources, 2020, 20, 531-543.	4.8	76
13	Genome Sequence of the Euryhaline Javafish Medaka, <i>Oryzias javanicus</i> : A Small Aquarium Fish Model for Studies on Adaptation to Salinity. G3: Genes, Genomes, Genetics, 2020, 10, 907-915.	1.8	22
14	Lighting chaperone-mediated autophagy (CMA) evolution with an ancient LAMP: the existence of a functional CMA activity in fish. Autophagy, 2020, 16, 1918-1920.	9.1	5
15	Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758). BMC Genomics, 2020, 21, 552.	2.8	28
16	Reconstruction of the birth of a male sex chromosome present in Atlantic herring. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24359-24368.	7.1	36
17	Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish. Molecular Biology and Evolution, 2020, 37, 2887-2899.	8.9	29
18	Crosstalk Between Retinoic Acid and Sex-Related Genes Controls Germ Cell Fate and Gametogenesis in Medaka. Frontiers in Cell and Developmental Biology, 2020, 8, 613497.	3.7	3

AMAURY HERPIN

#	Article	IF	CITATIONS
19	Primordial Germ Cell Migration and Histological and Molecular Characterization of Gonadal Differentiation in Pachón Cavefish <i>Astyanax mexicanus</i> . Sexual Development, 2020, 14, 80-98.	2.0	7
20	Analysis of the putative tumor suppressor gene <i>cdkn2ab</i> in pigment cells and melanoma of <i>Xiphophorus</i> and medaka. Pigment Cell and Melanoma Research, 2019, 32, 248-258.	3.3	15
21	Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation. PLoS Genetics, 2019, 15, e1008013.	3.5	107
22	Increase of cortisol levels after temperature stress activates <i>dmrt1a</i> causing femaleâ€ŧoâ€male sex reversal and reduced germ cell number in medaka. Molecular Reproduction and Development, 2019, 86, 1405-1417.	2.0	30
23	A novel evolutionary conserved mechanism of RNA stability regulates synexpression of primordial germ cell-specific genes prior to the sex-determination stage in medaka. PLoS Biology, 2019, 17, e3000185.	5.6	8
24	The unusual rainbow trout sex determination gene hijacked the canonical vertebrate gonadal differentiation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12781-12786.	7.1	67
25	Evolution of Sex Determining Genes in Fish. , 2018, , 168-175.		3
26	CMA restricted to mammals and birds: myth or reality?. Autophagy, 2018, 14, 1267-1270.	9.1	18
27	Sex Determination in Vertebrates. , 2018, , 159-167.		2
28	Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biology, 2018, 16, 16.	3.8	56
29	Autosomal gsdf acts as a male sex initiator in the fish medaka. Scientific Reports, 2016, 6, 19738.	3.3	89
30	Retinoic acid and meiosis induction in adult versus embryonic gonads of medaka. Scientific Reports, 2016, 6, 34281.	3.3	27
31	Foxl2 and Its Relatives Are Evolutionary Conserved Players in Gonadal Sex Differentiation. Sexual Development, 2016, 10, 111-129.	2.0	87
32	Vertebrate sex-determining genes play musical chairs. Comptes Rendus - Biologies, 2016, 339, 258-262.	0.2	65
33	Plasticity of geneâ€regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Reports, 2015, 16, 1260-1274.	4.5	216
34	Defective autophagy through <i>epg5</i> mutation results in failure to reduce germ plasm and mitochondria. FASEB Journal, 2015, 29, 4145-4161.	0.5	29
35	Analysis of a novel gene, <i>Sdgc</i> , reveals sex chromosome-dependent differences of medaka germ cells prior to gonad formation. Development (Cambridge), 2014, 141, 3363-3369.	2.5	15
36	Divergent Expression Regulation of Gonad Development Genes in Medaka Shows Incomplete Conservation of the Downstream Regulatory Network of Vertebrate Sex Determination. Molecular Biology and Evolution, 2013, 30, 2328-2346.	8.9	65

AMAURY HERPIN

#	Article	IF	CITATIONS
37	Vertebrate sex determination: questioning the hierarchy. FEBS Journal, 2011, 278, 1001-1001.	4.7	7
38	<i>Dmrt1</i> genes at the crossroads: a widespread and central class of sexual development factors in fish. FEBS Journal, 2011, 278, 1010-1019.	4.7	165
39	miR-196 regulates axial patterning and pectoral appendage initiation. Developmental Biology, 2011, 357, 463-477.	2.0	74
40	Sex Determination: Switch and Suppress. Current Biology, 2011, 21, R656-R659.	3.9	68
41	Ectopic Expression of Single Transcription Factors Directs Differentiation of a Medaka Spermatogonial Cell Line. Stem Cells and Development, 2011, 20, 1425-1438.	2.1	18
42	Transcriptional Rewiring of the Sex Determining dmrt1 Gene Duplicate by Transposable Elements. PLoS Genetics, 2010, 6, e1000844.	3.5	100
43	A highly conserved cis -regulatory motif directs differential gonadal synexpression of Dmrt1 transcripts during gonad development. Nucleic Acids Research, 2009, 37, 1510-1520.	14.5	18
44	Structural and functional characterizations of an Activin type II receptor orthologue from the pacific oyster Crassostrea gigas. Gene, 2009, 436, 101-107.	2.2	22
45	Regulatory back-up circuit of medaka Wt1 co-orthologs ensures PGC maintenance. Developmental Biology, 2009, 325, 179-188.	2.0	34
46	Molecular mechanisms of sex determination and evolution of the Y-chromosome: Insights from the medakafish (Oryzias latipes). Molecular and Cellular Endocrinology, 2009, 306, 51-58.	3.2	37
47	Regulatory <i>putsches</i> create new ways of determining sexual development. EMBO Reports, 2008, 9, 966-968.	4.5	18
48	Sequential SDF1a and b-induced mobility guides Medaka PGC migration. Developmental Biology, 2008, 320, 319-327.	2.0	50
49	Expression of the Male Determining Gene <i>dmrt1bY</i> and Its Autosomal Coorthologue <i>dmrt1a</i> in Medaka. Sexual Development, 2007, 1, 197-206.	2.0	37
50	Specification of primordial germ cells in medaka (Oryzias latipes). BMC Developmental Biology, 2007, 7, 3.	2.1	89
51	Inhibition of primordial germ cell proliferation by the medaka male determining gene Dmrt1bY. BMC Developmental Biology, 2007, 7, 99.	2.1	55
52	Cross-talk between the bone morphogenetic protein pathway and other major signaling pathways results in tightly regulated cell-specific outcomes. FEBS Journal, 2007, 274, 2977-2985.	4.7	90
53	A tolloid homologue from the Pacific oyster Crassostrea gigas. Gene Expression Patterns, 2007, 7, 700-708.	0.8	10
54	Characterization of a Defensin from the Oyster Crassostrea gigas. Journal of Biological Chemistry, 2006, 281, 313-323.	3.4	166

AMAURY HERPIN

#	Article	IF	CITATIONS
55	Structural and functional evidence for a singular repertoire of BMP receptor signal transducing proteins in the lophotrochozoan Crassostrea gigas suggests a shared ancestral BMP/activin pathway. FEBS Journal, 2005, 272, 3424-3440.	4.7	32
56	Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization. Development Genes and Evolution, 2005, 215, 297-305.	0.9	91
57	Structural and functional evidences for a type 1 TGF-β sensu stricto receptor in the lophotrochozoan Crassostrea gigas suggest conserved molecular mechanisms controlling mesodermal patterning across bilateria. Mechanisms of Development, 2005, 122, 695-705.	1.7	28
58	Molecular characterization of a new leucine-rich repeat-containing G protein-coupled receptor from a bivalve mollusc: evolutionary implications. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1680, 137-144.	2.4	15
59	Transforming growth factor-β-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Developmental and Comparative Immunology, 2004, 28, 461-485.	2.3	189
60	The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality. Gene, 2004, 343, 211-220.	2.2	127
61	Gene structure and expression of cg -ALR1, a type I activin-like receptor from the bivalve mollusc Crassostrea gigas. Gene, 2002, 301, 21-30.	2.2	24
62	A Supernumerary "B-Sex―Chromosome Drives Male Sex Determination in the Pachón Cavefish, <i>Astyanax mexicanus</i> . SSRN Electronic Journal, 0, , .	0.4	2