Takao Nakata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2695824/publications.pdf

Version: 2024-02-01

687363 794594 2,480 20 13 citations h-index papers

19 g-index 22 22 22 3466 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling. Journal of Biological Chemistry, 2021, 296, 100290.	3.4	11
2	A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. Cell Reports Medicine, 2021, 2, 100298.	6.5	17
3	The RAS-interacting chaperone UNC119 drives the RASSF6–MDM2–p53 axis and antagonizes RAS-mediated malignant transformation. Journal of Biological Chemistry, 2020, 295, 11214-11230.	3.4	4
4	Optogenetic manipulation of intracellular calcium by BACCS promotes differentiation of MC3T3-E1 cells. Biochemical and Biophysical Research Communications, 2018, 506, 716-722.	2.1	6
5	Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS. Nature Communications, 2015, 6, 8021.	12.8	67
6	Optogenetic Control of PIP3: PIP3 Is Sufficient to Induce the Actin-Based Active Part of Growth Cones and Is Regulated via Endocytosis. PLoS ONE, 2013, 8, e70861.	2.5	67
7	Preferential binding of a kinesin-1 motor to GTP-tubulin–rich microtubules underlies polarized vesicle transport. Journal of Cell Biology, 2011, 194, 245-255.	5.2	137
8	Neuronal Polarity and the Kinesin Superfamily Proteins. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe6-pe6.	3.9	19
9	The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nature Cell Biology, 2005, 7, 474-482.	10.3	156
10	Kinesin Superfamily Protein 2A (KIF2A) Functions in Suppression of Collateral Branch Extension. Cell, 2003, 114, 229-239.	28.9	261
11	Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. Journal of Cell Biology, 2003, 162, 1045-1055.	5.2	286
12	Molecular Motor KIF1C Is Not Essential for Mouse Survival and Motor-Dependent Retrograde Golgi Apparatus-to-Endoplasmic Reticulum Transport. Molecular and Cellular Biology, 2002, 22, 866-873.	2.3	31
13	Role of KIFC3 motor protein in Golgi positioning and integration. Journal of Cell Biology, 2002, 158, 293-303.	5.2	77
14	Charcot-Marie-Tooth Disease Type 2A Caused by Mutation in a Microtubule Motor KIF1Bβ. Cell, 2001, 105, 587-597.	28.9	725
15	Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. Journal of Cell Biology, 2001, 155, 65-76.	5.2	256
16	Visualization of the Dynamics of Synaptic Vesicle and Plasma Membrane Proteins in Living Axons. Journal of Cell Biology, 1998, 140, 659-674.	5.2	298
17	Redistribution of Synapsin I and Synaptophysin in Response to Electrical Stimulation in the Rat Neurohypophysial Nerve Endings Cell Structure and Function, 1994, 19, 253-262.	1.1	5
18	613 The characterization of KIF2, a new member of kinesin superfamily expressed in the nervous and immune system. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1993, 18, S75.	0.0	0

ΤΑΚΑΟ ΝΑΚΑΤΑ

#	Article	IF	CITATION
19	Is dynamin a microtubule-associated motor in neurons?. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1992, 17, 128.	0.0	0
20	Chronological expression of microtubule-associated proteins (MAPs) in EC cell P19 after neuronal induction by retinoic acid. Brain Research, 1992, 596, 269-278.	2.2	54