Rasmus Kjøbsted

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2695552/publications.pdf

Version: 2024-02-01

414414 331670 1,747 31 21 32 citations h-index g-index papers 34 34 34 2532 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Comment on De Wendt et al. Contraction-Mediated Glucose Transport in Skeletal Muscle Is Regulated by a Framework of AMPK, TBC1D1/4, and Rac1. Diabetes 2021;70:2796–2809. Diabetes, 2022, 71, e3-e4.	0.6	1
2	Illumination of the Endogenous Insulin-Regulated TBC1D4 Interactome in Human Skeletal Muscle. Diabetes, 2022, 71, 906-920.	0.6	3
3	Measurement of Insulin- and Contraction-Stimulated Glucose Uptake in Isolated and Incubated Mature Skeletal Muscle from Mice. Journal of Visualized Experiments, 2021, , .	0.3	7
4	Effect of exercise training on skeletal muscle protein expression in relation to insulin sensitivity: Perâ€protocol analysis of a randomized controlled trial (GOâ€ACTIWE). Physiological Reports, 2021, 9, e14850.	1.7	2
5	Direct small molecule ADaM-site AMPK activators reveal an AMPKÎ ³ 3-independent mechanism for blood glucose lowering. Molecular Metabolism, 2021, 51, 101259.	6.5	10
6	Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nature Communications, 2021, 12, 304.	12.8	79
7	Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution. Nature Communications, 2021, 12, 7113.	12.8	38
8	Insulinâ€stimulated glucose uptake partly relies on p21â€activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. Journal of Physiology, 2020, 598, 5351-5377.	2.9	15
9	Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Molecular Metabolism, 2020, 40, 101028.	6.5	32
10	Colchicine treatment impairs skeletal muscle mitochondrial function and insulin sensitivity in an ageâ€specific manner. FASEB Journal, 2020, 34, 8653-8670.	0.5	13
11	ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2. Molecular Metabolism, 2020, 35, 100949.	6.5	25
12	TBC1D4 Is Necessary for Enhancing Muscle Insulin Sensitivity in Response to AICAR and Contraction. Diabetes, 2019, 68, 1756-1766.	0.6	40
13	AMPK and TBC1D1 Regulate Muscle Glucose Uptake After, but Not During, Exercise and Contraction. Diabetes, 2019, 68, 1427-1440.	0.6	67
14	Metformin does not compromise energy status in human skeletal muscle at rest or during acute exercise: A randomised, crossover trial. Physiological Reports, 2019, 7, e14307.	1.7	18
15	Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Molecular Metabolism, 2018, 11, 160-177.	6.5	60
16	AMPK in skeletal muscle function and metabolism. FASEB Journal, 2018, 32, 1741-1777.	0.5	289
17	Serum Is Not Necessary for Prior Pharmacological Activation of AMPK to Increase Insulin Sensitivity of Mouse Skeletal Muscle. International Journal of Molecular Sciences, 2018, 19, 1201.	4.1	5
18	Differential effects of high-fat diet and exercise training on bone and energy metabolism. Bone, 2018, 116, 120-134.	2.9	37

#	Article	IF	Citations
19	Rac1 muscle knockout exacerbates the detrimental effect of highâ€fat diet on insulinâ€stimulated muscle glucose uptake independently of Akt. Journal of Physiology, 2018, 596, 2283-2299.	2.9	41
20	Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects. BMC Medicine, 2017, 15, 39.	5.5	51
21	Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice. Cell Metabolism, 2017, 25, 1147-1159.e10.	16.2	205
22	Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. Journal of Physiology, 2017, 595, 4845-4855.	2.9	43
23	Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes, 2017, 66, 1501-1510.	0.6	120
24	Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK. Diabetes, 2017, 66, 598-612.	0.6	137
25	Role of AMP-Activated Protein Kinase for Regulating Post-exercise Insulin Sensitivity. Exs, 2016, 107, 81-126.	1.4	21
26	Intact Regulation of the AMPK Signaling Network in Response to Exercise and Insulin in Skeletal Muscle of Male Patients With Type 2 Diabetes: Illumination of AMPK Activation in Recovery From Exercise. Diabetes, 2016, 65, 1219-1230.	0.6	62
27	α-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS ONE, 2016, 11, e0157027.	2.5	8
28	AMPKα is critical for enhancing skeletal muscle fatty acid utilization during <i>in vivo</i> exercise in mice. FASEB Journal, 2015, 29, 1725-1738.	0.5	68
29	Prior AICAR Stimulation Increases Insulin Sensitivity in Mouse Skeletal Muscle in an AMPK-Dependent Manner. Diabetes, 2015, 64, 2042-2055.	0.6	115
30	AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E900-E914.	3.5	28
31	Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. Journal of Physiology, 2014, 592, 351-375.	2.9	95