Bridget Carragher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2693682/publications.pdf

Version: 2024-02-01

202 papers 17,494 citations

20817 60 h-index 122 g-index

228 all docs

228 docs citations

times ranked

228

16642 citing authors

#	Article	lF	Citations
1	Automated molecular microscopy: The new Leginon system. Journal of Structural Biology, 2005, 151, 41-60.	2.8	1,608
2	Appion: An integrated, database-driven pipeline to facilitate EM image processing. Journal of Structural Biology, 2009, 166, 95-102.	2.8	848
3	A structural change in the kinesin motor protein that drives motility. Nature, 1999, 402, 778-784.	27.8	745
4	Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nature Methods, 2017, 14, 793-796.	19.0	708
5	Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 2015, 523, 561-567.	27.8	683
6	Cryo-EM Structure of a Fully Glycosylated Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1484-1490.	12.6	662
7	Myosin VI is an actin-based motor that moves backwards. Nature, 1999, 401, 505-508.	27.8	643
8	DoG Picker and TiltPicker: Software tools to facilitate particle selection in single particle electron microscopy. Journal of Structural Biology, 2009, 166, 205-213.	2.8	569
9	Architecture and design of the nuclear pore complex. Cell, 1992, 69, 1133-1141.	28.9	451
10	Beam-induced motion of vitrified specimen on holey carbon film. Journal of Structural Biology, 2012, 177, 630-637.	2.8	366
11	Leginon: An Automated System for Acquisition of Images from Vitreous Ice Specimens. Journal of Structural Biology, 2000, 132, 33-45.	2.8	310
12	Structure of the Sec13/31 COPII coat cage. Nature, 2006, 439, 234-238.	27.8	286
13	Movies of Ice-Embedded Particles Enhance Resolution in Electron Cryo-Microscopy. Structure, 2012, 20, 1823-1828.	3.3	277
14	The Structure of an Infectious P22 Virion Shows the Signal for Headful DNA Packaging. Science, 2006, 312, 1791-1795.	12.6	276
15	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	30.7	256
16	Structural Basis for Cargo Regulation of COPII Coat Assembly. Cell, 2008, 134, 474-484.	28.9	242
17	Routine single particle CryoEM sample and grid characterization by tomography. ELife, 2018, 7, .	6.0	216
18	Organization of the Influenza Virus Replication Machinery. Science, 2012, 338, 1631-1634.	12.6	208

#	Article	IF	CITATIONS
19	Structure of the insulin receptor–insulin complex by single-particle cryo-EM analysis. Nature, 2018, 556, 122-125.	27.8	184
20	Visualizing Ribosome Biogenesis: Parallel Assembly Pathways for the 30 <i>S</i> Subunit. Science, 2010, 330, 673-677.	12.6	181
21	Fully automated, sequential tilt-series acquisition with Leginon. Journal of Structural Biology, 2009, 167, 11-18.	2.8	180
22	The molecular architecture of human Dicer. Nature Structural and Molecular Biology, 2012, 19, 436-440.	8.2	175
23	Reducing effects of particle adsorption to the air–water interface in cryo-EM. Nature Methods, 2018, 15, 793-795.	19.0	167
24	Unnatural Amino Acid Incorporation into Virus-Like Particles. Bioconjugate Chemistry, 2008, 19, 866-875.	3.6	164
25	Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell, 2016, 167, 1610-1622.e15.	28.9	163
26	FACT caught in the act of manipulating the nucleosome. Nature, 2020, 577, 426-431.	27.8	160
27	$2.8~\tilde{A}$ resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. ELife, 2015, 4, .	6.0	156
28	Leginon: a system for fully automated acquisition of 1000 electron micrographs a day. Ultramicroscopy, 1999, 77, 153-161.	1.9	151
29	Bacteriophage Lambda Stabilization by Auxiliary Protein gpD: Timing, Location, and Mechanism of Attachment Determined by Cryo-EM. Structure, 2008, 16, 1399-1406.	3.3	150
30	Spotiton: New features and applications. Journal of Structural Biology, 2018, 202, 161-169.	2.8	140
31	Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. Journal of Structural Biology, 2012, 179, 68-75.	2.8	139
32	ACE: Automated CTF Estimation. Ultramicroscopy, 2005, 104, 8-29.	1.9	136
33	A new method for vitrifying samples for cryoEM. Journal of Structural Biology, 2016, 195, 190-198.	2.8	135
34	Automatic particle selection: results of a comparative study. Journal of Structural Biology, 2004, 145, 3-14.	2.8	129
35	Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature, 2019, 576, 315-320.	27.8	123
36	Serial Section Electron Tomography: A Method for Three-Dimensional Reconstruction of Large Structures. Neurolmage, 1994, 1, 230-243.	4.2	122

#	Article	IF	Citations
37	High resolution single particle cryo-electron microscopy using beam-image shift. Journal of Structural Biology, 2018, 204, 270-275.	2.8	115
38	Routine determination of ice thickness for cryo-EM grids. Journal of Structural Biology, 2018, 204, 38-44.	2.8	114
39	Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15981-15986.	7.1	111
40	Engineered nanostructured \hat{l}^2 -sheet peptides protect membrane proteins. Nature Methods, 2013, 10, 759-761.	19.0	110
41	Conformational states of the full-length glucagon receptor. Nature Communications, 2015, 6, 7859.	12.8	110
42	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	28.9	106
43	Time-resolved cryo-EM using Spotiton. Nature Methods, 2020, 17, 897-900.	19.0	96
44	Distinct Conformational Spectrum of Homologous Multidrug ABC Transporters. Structure, 2015, 23, 450-460.	3.3	94
45	Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer. Nature Structural and Molecular Biology, 2017, 24, 370-378.	8.2	94
46	Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy. Journal of Structural Biology, 2011, 176, 404-408.	2.8	91
47	Molecular architecture of mammalian nitric oxide synthases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3614-23.	7.1	91
48	Optimizing "self-wicking―nanowire grids. Journal of Structural Biology, 2018, 202, 170-174.	2.8	88
49	Visualization of clustered protocadherin neuronal self-recognition complexes. Nature, 2019, 569, 280-283.	27.8	86
50	Automated cryoEM data acquisition and analysis of 284742 particles of GroEL. Journal of Structural Biology, 2006, 155, 470-481.	2.8	84
51	Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Virology Journal, 2012, 9, 52.	3.4	83
52	Uptake and transfection efficiency of PEGylated cationic liposome–DNA complexes with and without RGD-tagging. Biomaterials, 2014, 35, 4996-5005.	11.4	81
53	Distinct conformations of the kinesin Unc104 neck regulate a monomer to dimer motor transition. Journal of Cell Biology, 2003, 163, 743-753.	5.2	80
54	Characterization of Circulating Endothelial Cells in Acute Myocardial Infarction. Science Translational Medicine, 2012, 4, 126ra33.	12.4	77

#	Article	IF	CITATIONS
55	Leginon: New features and applications. Protein Science, 2021, 30, 136-150.	7.6	77
56	Automatic particle detection through efficient hough transforms. IEEE Transactions on Medical Imaging, 2003, 22, 1053-1062.	8.9	76
57	Engineered Mutations Change the Structure and Stability of a Virus-Like Particle. Biomacromolecules, 2012, 13, 2339-2348.	5.4	72
58	Structural analysis of polymers of sickle cell hemoglobin. Journal of Molecular Biology, 1988, 199, 315-331.	4.2	71
59	PHOELIX: a package for semi-automated helical reconstruction. Ultramicroscopy, 1995, 58, 245-259.	1.9	71
60	Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types $1\hat{a}\in$ 4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12265-12270.	7.1	70
61	Structure of the Human Dicer-TRBP Complex by Electron Microscopy. Structure, 2009, 17, 1326-1332.	3.3	69
62	A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. ELife, 2014, 3, .	6.0	65
63	The P22 Tail Machine at Subnanometer Resolution Reveals the Architecture of an Infection Conduit. Structure, 2009, 17, 789-799.	3.3	63
64	Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Cell Chemical Biology, 2018, 25, 1318-1325.	5.2	63
65	Liquid Crystalline Phases of Dendritic Lipidâ^'DNA Self-Assemblies: Lamellar, Hexagonal, and DNA Bundles. Journal of Physical Chemistry B, 2009, 113, 3694-3703.	2.6	62
66	Helical Processing Using PHOELIX. Journal of Structural Biology, 1996, 116, 107-112.	2.8	57
67	Single-particle EM reveals the higher-order domain architecture of soluble guanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2960-2965.	7.1	57
68	An Improved Holey Carbon Film for Cryo-Electron Microscopy. Microscopy and Microanalysis, 2007, 13, 365-371.	0.4	55
69	Characterization of virus-like particles in GARDASIL® by cryo transmission electron microscopy. Human Vaccines and Immunotherapeutics, 2014, 10, 734-739.	3.3	53
70	Data management challenges in three-dimensional EM. Nature Structural and Molecular Biology, 2012, 19, 1203-1207.	8.2	49
71	Automated Identification of Filaments in Cryoelectron Microscopy Images. Journal of Structural Biology, 2001, 135, 302-312.	2.8	48
72	Automated data collection in single particle electron microscopy. Microscopy (Oxford, England), 2016, 65, 43-56.	1.5	48

#	Article	IF	CITATIONS
73	A Toolbox for ab initio 3-D reconstructions in single-particle electron microscopy. Journal of Structural Biology, 2010, 169, 389-398.	2.8	46
74	Toolbox for Non-Intrusive Structural and Functional Analysis of Recombinant VLP Based Vaccines: A Case Study with Hepatitis B Vaccine. PLoS ONE, 2012, 7, e33235.	2.5	46
7 5	Complete functional mapping of infection- and vaccine-elicited antibodies against the fusion peptide of HIV. PLoS Pathogens, 2018, 14, e1007159.	4.7	46
76	Cryomeshâ,,¢: A New Substrate for Cryo-Electron Microscopy. Microscopy and Microanalysis, 2010, 16, 43-53.	0.4	45
77	Big data in cryoEM: automated collection, processing and accessibility of EM data. Current Opinion in Microbiology, 2018, 43, 1-8.	5.1	45
78	Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. ELife, 2018, 7, .	6.0	45
79	PEGylation of Paclitaxel-Loaded Cationic Liposomes Drives Steric Stabilization of Bicelles and Vesicles thereby Enhancing Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery and Cytotoxicity to Human Cancer Cells. ACS Applied Materials & Delivery & Del	8.0	45
80	Better, Faster, Cheaper: Recent Advances in Cryo–Electron Microscopy. Annual Review of Biochemistry, 2022, 91, 1-32.	11.1	45
81	Temperature Monitoring of an EM Environment. Microscopy Today, 2006, 14, 24-29.	0.3	43
82	Mechanotransduction by PCDH15 Relies on a Novel cis-Dimeric Architecture. Neuron, 2018, 99, 480-492.e5.	8.1	43
83	Waffle Method: A general and flexible approach for improving throughput in FIB-milling. Nature Communications, 2022, 13, 1857.	12.8	43
84	Genomic and functional analysis of <i>Vibrio</i> phage SIOâ€2 reveals novel insights into ecology and evolution of marine siphoviruses. Environmental Microbiology, 2012, 14, 2071-2086.	3.8	42
85	Current outcomes when optimizing â€~standard' sample preparation for singleâ€particle cryoâ€EM. Journal of Microscopy, 2019, 276, 39-45.	1.8	41
86	Engineering the PP7 Virus Capsid as a Peptide Display Platform. ACS Nano, 2019, 13, 4443-4454.	14.6	40
87	Towards automated screening of two-dimensional crystals. Journal of Structural Biology, 2007, 160, 324-331.	2.8	39
88	Transmission Electron Microscopy as an Orthogonal Method to Characterize Protein Aggregates. Journal of Pharmaceutical Sciences, 2015, 104, 750-759.	3.3	39
89	Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation. Journal of Structural Biology, 2007, 159, 335-346.	2.8	38
90	A new model for binding of kinesin 13 to curved microtubule protofilaments. Journal of Cell Biology, 2009, $185, 51-57$.	5.2	38

#	Article	IF	Citations
91	Single-particle EM reveals extensive conformational variability of the Ltn1 E3 ligase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1702-1707.	7.1	38
92	The structure of dual-variable-domain immunoglobulin molecules alone and bound to antigen. MAbs, 2013, 5, 364-372.	5.2	38
93	Family-wide Structural and Biophysical Analysis of Binding Interactions among Non-clustered Î-Protocadherins. Cell Reports, 2020, 30, 2655-2671.e7.	6.4	35
94	CTF Challenge: Result summary. Journal of Structural Biology, 2015, 190, 348-359.	2.8	34
95	Benchmarking cryo-EM Single Particle Analysis Workflow. Frontiers in Molecular Biosciences, 2018, 5, 50.	3.5	34
96	The reconstruction of helical particles with variable pitch. Ultramicroscopy, 1988, 26, 255-270.	1.9	33
97	A test-bed for optimizing high-resolution single particle reconstructions. Journal of Structural Biology, 2008, 163, 29-39.	2.8	33
98	Block Liposomes from Curvature-Stabilizing Lipids: Connected Nanotubes, -rods, or -spheres. Langmuir, 2009, 25, 2979-2985.	3.5	32
99	Robotic grid loading system for a transmission electron microscope. Journal of Structural Biology, 2004, 146, 431-440.	2.8	30
100	Maximizing the potential of electron cryomicroscopy data collected using direct detectors. Journal of Structural Biology, 2013, 184, 193-202.	2.8	30
101	Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria. Molecular Cell, 2020, 78, 683-699.e11.	9.7	27
102	Small Molecule Microcrystal Electron Diffraction for the Pharmaceutical Industry–Lessons Learned From Examining Over Fifty Samples. Frontiers in Molecular Biosciences, 2021, 8, 648603.	3.5	27
103	Capsomer Dynamics and Stabilization in the TÂ= 12 Marine Bacteriophage SIO-2 and Its Procapsid Studied by CryoEM. Structure, 2012, 20, 498-503.	3.3	26
104	DNA bending-induced phase transition of encapsidated genome in phage \hat{A} . Nucleic Acids Research, 2013, 41, 4518-4524.	14.5	25
105	emScope: A Tool Kit for Control and Automation of a Remote Electron Microscope. Journal of Structural Biology, 1997, 120, 309-319.	2.8	24
106	A relational database for cryoEM: experience at one year and 50 000 images. Journal of Structural Biology, 2002, 137, 273-282.	2.8	24
107	Automated three-dimensional reconstruction of keyhole limpet hemocyanin type 1. Journal of Structural Biology, 2003, 144, 301-312.	2.8	24
108	Polyvalent Display of Heme on Hepatitis B Virus Capsid Protein through Coordination to Hexahistidine Tags. Chemistry and Biology, 2008, 15, 513-519.	6.0	24

#	Article	IF	Citations
109	Nucleotide dependent packing differences in helical crystals of the ABC transporter MsbA. Journal of Structural Biology, 2009, 165, 169-175.	2.8	24
110	Patterned Threadlike Micelles and DNA-Tethered Nanoparticles: A Structural Study of PEGylated Cationic Liposome–DNA Assemblies. Langmuir, 2015, 31, 7073-7083.	3.5	24
111	Allosteric Regulation of DNA Cleavage and Sequence-Specificity through Run-On Oligomerization. Structure, 2013, 21, 1848-1858.	3.3	23
112	Symmetric activation and modulation of the human calcium-sensing receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	23
113	Improving the Positional Accuracy of the Goniometer on the Philips CM Series TEM. Journal of Structural Biology, 1999, 128, 250-256.	2.8	22
114	Rapid routine structure determination of macromolecular assemblies using electron microscopy: current progress and further challenges. Journal of Synchrotron Radiation, 2004, 11, 83-85.	2.4	22
115	Helical crystallization on lipid nanotubes: Streptavidin as a model protein. Journal of Structural Biology, 2005, 150, 90-99.	2.8	22
116	Automation in Single-Particle Electron Microscopy. Methods in Enzymology, 2010, 483, 291-338.	1.0	22
117	Optimod – An automated approach for constructing and optimizing initial models for single-particle electron microscopy. Journal of Structural Biology, 2013, 184, 417-426.	2.8	22
118	Label-free visual proteomics: Coupling MS- and EM-based approaches in structural biology. Molecular Cell, 2022, 82, 285-303.	9.7	21
119	Advances in Computational Image Processing for Microscopy. Journal of Structural Biology, 1996, 116, 2-8.	2.8	20
120	Maturation in Action: CryoEM Study of a Viral Capsid Caught during Expansion. Structure, 2012, 20, 1384-1390.	3.3	20
121	Nucleotide-dependent conformational changes in the N-Ethylmaleimide Sensitive Factor (NSF) and their potential role in SNARE complex disassembly. Journal of Structural Biology, 2012, 177, 335-343.	2.8	20
122	Nanoscale Assembly in Biological Systems: From Neuronal Cytoskeletal Proteins to Curvature Stabilizing Lipids. Advanced Materials, 2011, 23, 2260-2270.	21.0	19
123	DOLORS: Versatile Strategy for Internal Labeling and Domain Localization in Electron Microscopy. Structure, 2012, 20, 1995-2002.	3.3	19
124	Strategies for Automated CryoEM Data Collection Using Direct Detectors. Methods in Enzymology, 2016, 579, 87-102.	1.0	19
125	Does contamination buildup limit throughput for automated cryoEM?. Journal of Structural Biology, 2006, 154, 303-311.	2.8	17
126	Near-atomic resolution reconstructions using a mid-range electron microscope operated at 200kV. Journal of Structural Biology, 2014, 188, 183-187.	2.8	16

#	Article	IF	Citations
127	The effect of salt and pH on block liposomes studied by cryogenic transmission electron microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1869-1876.	2.6	15
128	Block Liposomes. Methods in Enzymology, 2009, 465, 111-128.	1.0	15
129	Typhon: Multiplexed TEM Sample Preparation. Microscopy and Microanalysis, 2014, 20, 1158-1159.	0.4	14
130	Cryo-EM structure of arabinosyltransferase EmbB from Mycobacterium smegmatis. Nature Communications, 2020, 11, 3396.	12.8	14
131	EDITORIAL. Journal of Structural Biology, 1996, 116, 1.	2.8	12
132	EVAC: a virtual environment for control of remote imaging instrumentation. IEEE Computer Graphics and Applications, 1996, 16, 62-66.	1.2	12
133	Automated Image Acquisition for Single-Particle Reconstruction Using p97 as the Biological Sample. Journal of Structural Biology, 2001, 133, 102-107.	2.8	12
134	Laboratory Design for High-Performance Electron Microscopy. Microscopy Today, 2004, 12, 8-17.	0.3	12
135	JavaScope: A Web-Based TEM Control Interface. Journal of Structural Biology, 1999, 125, 229-234.	2.8	11
136	Windex: a toolset for indexing helices. Journal of Structural Biology, 2003, 144, 172-183.	2.8	11
137	Software tools for macromolecular microscopy. Journal of Structural Biology, 2007, 157, 1-2.	2.8	11
138	Software tools for molecular microscopy. Journal of Structural Biology, 2008, 163, 224-228.	2.8	11
139	Block liposome and nanotube formation is a general phenomenon of two-component membranes containing multivalent lipids. Soft Matter, 2011, 7, 8363.	2.7	11
140	Analytical Methods and Software Tools for Macromolecular Microscopy. Journal of Structural Biology, 2003, 144, 1-3.	2.8	10
141	Structure and View Estimation for Tomographic Reconstruction: A Bayesian Approach. , 0, , .		9
142	Software Tools for Molecular Microscopy. Methods in Enzymology, 2010, 482, 381-392.	1.0	9
143	Seeing Atoms: Single-Particle Cryo-EM Breaks the Atomic Barrier. Molecular Cell, 2020, 80, 938-939.	9.7	9
144	Broadening access to cryoEM through centralized facilities. Trends in Biochemical Sciences, 2022, 47, 106-116.	7.5	9

#	Article	IF	Citations
145	Reducing cryoEM file storage using lossy image formats. Journal of Structural Biology, 2019, 207, 49-55.	2.8	8
146	Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles. Microscopy and Microanalysis, 2015, 21, 1017-1025.	0.4	7
147	Automating Decision Making in the Cryo-EM Pre-processing Pipeline. Structure, 2020, 28, 727-729.	3.3	7
148	A helical processing pipeline for EM structure determination of membrane proteins. Methods, 2011, 55, 350-362.	3.8	5
149	Maskiton: Interactive, web-based classification of single-particle electron microscopy images. Journal of Structural Biology, 2013, 182, 155-163.	2.8	5
150	Spotiton and Chameleon Vitrification robots. Microscopy and Microanalysis, 2019, 25, 1010-1011.	0.4	5
151	Recombinant Virus-like Particle Protein Vaccines. , 2015, , 81-112.		4
152	Structural basis for the mechanisms of human presequence protease conformational switch and substrate recognition. Nature Communications, 2022, 13, 1833.	12.8	4
153	Automation for Cryo-TEM: from Specimen Grid to 3D Map. Microscopy and Microanalysis, 2001, 7, 970-971.	0.4	3
154	Self-Blotting Nanowire Grids for Cryo-EM Sample Preparation. Microscopy and Microanalysis, 2017, 23, 848-849.	0.4	3
155	Spotiton: a new method for vitrifying samples for cryo-EM. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1295-C1295.	0.1	3
156	Assembly of Building Blocks by Double-End-Anchored Polymers in the Dilute Regime Mediated by Hydrophobic Interactions at Controlled Distances. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45728-45743.	8.0	3
157	Cryo-Electron Microscopic Grid Preparation for Time-Resolved Studies using a Novel Robotic System, Spotiton. Journal of Visualized Experiments, 2021, , .	0.3	3
158	A Testbed for Automated Acquistion From a TEM. Microscopy and Microanalysis, 1998, 4, 8-9.	0.4	2
159	Automated Acquisition of Cryo Electron Micrographs Using Leginon. Microscopy and Microanalysis, 1999, 5, 376-377.	0.4	2
160	Bugscope: a Sustainable Web-Based Telemicroscopy Project for K-12 Classrooms. Microscopy and Microanalysis, 1999, 5, 514-515.	0.4	2
161	Adaptation of Leginon Software for Semi-Automated Recording of Electron Microscopic Images of Two-Dimensional Crystals. Microscopy and Microanalysis, 2003, 9, 1518-1519.	0.4	2
162	Improving Automation for Cryo-EM Specimen Preparation. Microscopy and Microanalysis, 2004, 10, 1508-1509.	0.4	2

#	Article	IF	CITATIONS
163	Implementing Best Practices at the National Center for Cryo-EM Access and Training. Microscopy and Microanalysis, 2020, 26, 324-325.	0.4	2
164	Webscope.TEM: A Modular System for Distributed TEM. Proceedings Annual Meeting Electron Microscopy Society of America, 1996, 54, 390-391.	0.0	2
165	Automated Filament Finding and Selection from Cryo Electron Micrographs. Microscopy and Microanalysis, 2001, 7, 986-987.	0.4	1
166	Application of a SQL Database for Automated Image Acquisition and Analysis for CRYOEM. Microscopy and Microanalysis, 2001, 7, 984-985.	0.4	1
167	Remote Scripting for Microscope Control Applications on the Tecnai TEM. Microscopy and Microanalysis, 2002, 8, 872-873.	0.4	1
168	Contaminant detection: improving template matching based particle selection for cryoelectron microscopy. , 0 , , .		1
169	Applications of Automated Electron Microscopy: Using Leginon to Study the Structure of COPII Protein Complexes. Microscopy and Microanalysis, 2005, 11, .	0.4	1
170	TEM of Bacteriophages Found in Marine Sources. Microscopy Today, 2007, 15, 28-31.	0.3	1
171	Electron Microscopy as an Emerging Analytical Tool for Characterizing Biopharmaceuticals. Microscopy and Microanalysis, 2015, 21, 65-66.	0.4	1
172	Best Practices at the National Center for CryoEM Access and Training. Microscopy and Microanalysis, 2019, 25, 2662-2663.	0.4	1
173	Scorpion: Facilitating High Throughput Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 1002-1003.	0.4	1
174	A resolution record for cryoEM. Faculty Reviews, 2021, 10, 64.	3.9	1
175	An Integrated System for Transmission Electron Microscopy Microscopy and Microanalysis, 2000, 6, 280-281.	0.4	0
176	An Interactive User Interface for Automated Acquisition of Transmission Electron Micrographs. Microscopy and Microanalysis, 2000, 6, 288-289.	0.4	0
177	Automated Very Low Magnification Imaging for TEM. Microscopy and Microanalysis, 2001, 7, 982-983.	0.4	0
178	Monitoring the Temperature of a Cryogenic Stage for Cryo-EM. Microscopy and Microanalysis, 2002, 8, 866-867.	0.4	0
179	XMRBS: A Web Based Facilities Scheduler. Microscopy and Microanalysis, 2002, 8, 1580-1581.	0.4	0
180	An Autotomated Grid Handling System for TEM. Microscopy and Microanalysis, 2003, 9, 1214-1215.	0.4	0

#	Article	IF	CITATIONS
181	A Project Database Management System for Microscopy. Microscopy and Microanalysis, 2004, 10, 1276-1277.	0.4	O
182	Update on a Robotic Grid Loading System for TEM. Microscopy and Microanalysis, 2004, 10, 1376-1377.	0.4	0
183	Automated EM Data Acquisition using Leginon II. Microscopy and Microanalysis, 2004, 10, 1510-1511.	0.4	O
184	Characterizing Ice Contamination Using Leginon. Microscopy and Microanalysis, 2005, 11, .	0.4	0
185	A Case Study in Automated Molecular Microscopy. Microscopy and Microanalysis, 2006, 12, 1096-1097.	0.4	0
186	Automated Data Collection for Serial Section TEM. Microscopy and Microanalysis, 2006, 12, 1106-1107.	0.4	0
187	Automated Large Scale Tilt Pair Data Collection for TEM. Microscopy and Microanalysis, 2008, 14, 798-799.	0.4	0
188	Introducing Students to Research: Electron Microscopy of Bacteriophages. Microscopy Today, 2010, 18, 30-33.	0.3	0
189	Getting the Most out of Direct Detection Cameras for Low-Dose Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 2140-2141.	0.4	0
190	Recent advances in new technologies and applications for molecular TEM. Journal of Structural Biology, 2015, 192, 145.	2.8	0
191	Structural Characterization of Monoclonal Antibody Therapeutics by Transmission Electron Microscopy and 2D Classification Analysis. Microscopy and Microanalysis, 2016, 22, 1082-1083.	0.4	0
192	Lessons Learned from using a Cs-Corrected, Energy-Filtered, Phase-Plate TEM for Single-Particle CryoEM. Microscopy and Microanalysis, 2017, 23, 824-825.	0.4	0
193	Self-Wicking Nanowire Grids. Microscopy and Microanalysis, 2018, 24, 906-907.	0.4	0
194	High Resolution Cryo-TEM Single-Particle Averaging Reconstruction with Beam-Image Shift. Microscopy and Microanalysis, 2018, 24, 902-903.	0.4	0
195	Routine Determination of Ice Thickness by Energy Filtration. Microscopy and Microanalysis, 2018, 24, 898-899.	0.4	0
196	Strategies for Data Flow and Storage for High Throughput, High Resolution Cryo-EM Data Collection. Microscopy and Microanalysis, 2019, 25, 1394-1395.	0.4	0
197	Better, faster, and even cheap. Science, 2020, 370, 171-171.	12.6	0
198	Time-resolved CryoEM Using Spotiton. Microscopy and Microanalysis, 2020, 26, 326-327.	0.4	0

#	ARTICLE	IF	CITATIONS
199	Optimizing Self-wicking Grids for Chameleon. Microscopy and Microanalysis, 2020, 26, 334-335.	0.4	O
200	What's Going On with My CryoEM/CryoFIB-SEM Sample, and How Might I Improve It?. Microscopy and Microanalysis, 2020, 26, 1894-1895.	0.4	0
201	Testing and implementing a live processing workflow at the New York Structural Biology Center. Microscopy and Microanalysis, 2021, 27, 2296-2297.	0.4	0
202	The National Center for Cryoem Access and Training: Nationwide Access to Cryoem Technology and Curricula. Microscopy and Microanalysis, 2021, 27, 2294-2294.	0.4	0