Maria Concetta Geloso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2692966/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The S100B story: from biomarker to active factor in neural injury. Journal of Neurochemistry, 2019, 148, 168-187.	3.9	242
2	The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. Journal of Neurochemistry, 2012, 120, 644-659.	3.9	199
3	The Dual Role of Microglia in ALS: Mechanisms and Therapeutic Approaches. Frontiers in Aging Neuroscience, 2017, 9, 242.	3.4	180
4	Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochemistry International, 2011, 58, 729-738.	3.8	106
5	Elevated S100 blood level as an early indicator of intraventricular hemorrhage in preterm infants. Journal of the Neurological Sciences, 1999, 170, 32-35.	0.6	95
6	Changes in Open Field Behavior, Spatial Memory, and Hippocampal Parvalbumin Immunoreactivity Following Enrichment in Rats Exposed to Neonatal Anoxia. Experimental Neurology, 1996, 139, 25-33.	4.1	86
7	Cyclooxygenase-2 and Caspase 3 Expression in Trimethyltin-Induced Apoptosis in the Mouse Hippocampus. Experimental Neurology, 2002, 175, 152-160.	4.1	55
8	Trimethyltin-induced differential expression of PAR subtypes in reactive astrocytes of the rat hippocampus. Molecular Brain Research, 2004, 122, 93-98.	2.3	52
9	Canine cognitive deficit correlates with diffuse plaque maturation and S100β (â^') astrocytosis but not with insulin cerebrospinal fluid level. Acta Neuropathologica, 2006, 111, 519-528.	7.7	50
10	S100 Blood Concentrations in Children Subjected to Cardiopulmonary By-Pass. Clinical Chemistry, 1998, 44, 1058-1060.	3.2	49
11	Parvalbumin-Immunoreactive Neurons Are Not Affected by Trimethyltin-Induced Neurodegeneration in the Rat Hippocampus. Experimental Neurology, 1996, 139, 269-277.	4.1	46
12	Expression of astrocytic nestin in the rat hippocampus during trimethyltin-induced neurodegeneration. Neuroscience Letters, 2004, 357, 103-106.	2.1	46
13	The neuroprotective and neurogenic effects of neuropeptide Y administration in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy induced by trimethyltin. Journal of Neurochemistry, 2012, 122, 415-426.	3.9	46
14	Neuroprotective Strategies in Hippocampal Neurodegeneration Induced by the Neurotoxicant Trimethyltin. Neurochemical Research, 2013, 38, 240-253.	3.3	45
15	Calretinin-Containing Neurons in Trimethyltin-Induced Neurodegeneration in the Rat Hippocampus: An Immunocytochemical Study. Experimental Neurology, 1997, 146, 67-73.	4.1	44
16	Neurotrophic Features of Human Adipose Tissue-Derived Stromal Cells: <i>In Vitro</i> and <i>In Vivo</i> Studies. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	44
17	Expression of EMAP-II by Activated Monocytes/Microglial Cells in Different Regions of the Rat Hippocampus after Trimethyltin-Induced Brain Damage. Experimental Neurology, 2002, 177, 341-346.	4.1	43
18	Development of GABA and calcium binding proteins immunoreactivity in the rat hippocampus following neonatal anoxia. Neuroscience Letters, 1996, 211, 93-96.	2.1	39

#	Article	IF	CITATIONS
19	?-aminobutyric acidergic interneuron vulnerability to aging in canine prefrontal cortex. Journal of Neuroscience Research, 2004, 77, 913-920.	2.9	37
20	Gene Expression Profiling as a Tool to Investigate the Molecular Machinery Activated during Hippocampal Neurodegeneration Induced by Trimethyltin (TMT) Administration. International Journal of Molecular Sciences, 2013, 14, 16817-16835.	4.1	33
21	Enhanced neurogenesis during trimethyltin-induced neurodegeneration in the hippocampus of the adult rat. Brain Research Bulletin, 2005, 65, 471-477.	3.0	32
22	Protease-Activated Receptor–1 Expression in Rat Microglia after Trimethyltin Treatment. Journal of Histochemistry and Cytochemistry, 2011, 59, 302-311.	2.5	31
23	Rapidly Progressive Aphasic Dementia with Motor Neuron Disease: A Distinctive Clinical Entity. Dementia and Geriatric Cognitive Disorders, 2004, 17, 21-28.	1.5	30
24	Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Frontiers in Cellular Neuroscience, 2015, 9, 85.	3.7	30
25	Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats. Frontiers in Cellular Neuroscience, 2015, 9, 433.	3.7	30
26	Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells, 2021, 10, 686.	4.1	28
27	Progenitor/Stem Cell Markers in Brain Adjacent to Glioblastoma: GD3 Ganglioside and NG2 Proteoglycan Expression. Journal of Neuropathology and Experimental Neurology, 2016, 75, 134-147.	1.7	27
28	Neuronal Subpopulations of Developing Rat Hippocampus Containing Different Calcium-Binding Proteins Behave Distinctively in Trimethyltin-Induced Neurodegeneration. Experimental Neurology, 1998, 154, 645-653.	4.1	26
29	<i>Mycobacterium smegmatis</i> Expressing a Chimeric Protein MPT64-Proteolipid Protein (PLP) 139–151 Reorganizes the PLP-Specific T Cell Repertoire Favoring a CD8-Mediated Response and Induces a Relapsing Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2010, 184, 222-235.	0.8	26
30	Effect of acetyl-l-carnitine on hyperactivity and spatial memory deficits of rats exposed to neonatal anoxia. Neuroscience Letters, 1997, 223, 201-205.	2.1	25
31	Trimethyltin intoxication upâ€regulates nitric oxide synthase in neurons and purinergic ionotropic receptor 2 in astrocytes in the hippocampus. Journal of Neuroscience Research, 2010, 88, 500-509.	2.9	25
32	The Neurogenic Effects of Exogenous Neuropeptide Y: Early Molecular Events and Long-Lasting Effects in the Hippocampus of Trimethyltin-Treated Rats. PLoS ONE, 2014, 9, e88294.	2.5	24
33	Toll-Like Receptor 2 Mediates In Vivo Pro- and Anti-inflammatory Effects of Mycobacterium Tuberculosis and Modulates Autoimmune Encephalomyelitis. Frontiers in Immunology, 2016, 7, 191.	4.8	20
34	Alternative splicing of neurexins 1–3 is modulated by neuroinflammation in the prefrontal cortex of a murine model of multiple sclerosis. Experimental Neurology, 2021, 335, 113497.	4.1	19
35	S100B Protein and 4-Hydroxynonenal in the Spinal Cord of Wobbler Mice. Neurochemical Research, 2003, 28, 341-345.	3.3	17
36	Trimethyltin Modulates Reelin Expression and Endogenous Neurogenesis in the Hippocampus of Developing Rats. Neurochemical Research, 2016, 41, 1559-1569.	3.3	13

MARIA CONCETTA GELOSO

#	Article	IF	CITATIONS
37	BBS9 gene in nonsyndromic craniosynostosis: Role of the primary cilium in the aberrant ossification of the suture osteogenic niche. Bone, 2018, 112, 58-70.	2.9	12
38	A TLR/CD44 axis regulates T cell trafficking in experimental and human multiple sclerosis. IScience, 2022, 25, 103763.	4.1	12
39	The Neuroprotective Effects of 17β-Estradiol Pretreatment in a Model of Neonatal Hippocampal Injury Induced by Trimethyltin. Frontiers in Cellular Neuroscience, 2018, 12, 385.	3.7	11
40	S-100 proteins in trimethyltin-induced neurodegeneration in the rat hippocampus. Molecular and Chemical Neuropathology, 1997, 32, 129-141.	1.0	10
41	Post-natal Deletion of Neuronal cAMP Responsive-Element Binding (CREB)-1 Promotes Pro-inflammatory Changes in the Mouse Hippocampus. Neurochemical Research, 2017, 42, 2230-2245.	3.3	9
42	Transcriptome programs involved in the development and structure of the cerebellum. Cellular and Molecular Life Sciences, 2021, 78, 6431-6451.	5.4	9
43	Transplantation of Foetal Neural Stem Cells into the Rat Hippocampus During Trimethyltin-Induced Neurodegeneration. Neurochemical Research, 2007, 32, 2054-2061.	3.3	7
44	De novo expression of calretinin in trimethyltin-induced degeneration of developing rat hippocampus. Molecular Brain Research, 2002, 98, 141-144.	2.3	6
45	Editorial: Crosstalk between the Osteogenic and Neurogenic Stem Cell Niches: How Far are They from Each Other?. Frontiers in Cellular Neuroscience, 2016, 9, 504.	3.7	4