
MacDonald Christie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2692782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer's Disease Mouse Models. Cell, 2010, 142, 387-397.	13.5	1,563
2	Cloning and expression of a rat D2 dopamine receptor cDNA. Nature, 1988, 336, 783-787.	13.7	1,121
3	Cellular and Synaptic Adaptations Mediating Opioid Dependence. Physiological Reviews, 2001, 81, 299-343.	13.1	725
4	Regulation of <i>µ</i> -Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacological Reviews, 2013, 65, 223-254.	7.1	673
5	Mu and delta receptors belong to a family of receptors that are coupled to potassium channels Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 5487-5491.	3.3	555
6	How opioids inhibit GABA-mediated neurotransmission. Nature, 1997, 390, 611-614.	13.7	468
7	Conus Venom Peptide Pharmacology. Pharmacological Reviews, 2012, 64, 259-298.	7.1	372
8	Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. British Journal of Pharmacology, 2008, 154, 384-396.	2.7	370
9	Excitatory amino acid projections to the nucleus accumbens septi in the rat: A retrograde transport study utilizingd[3H]aspartate and [3H]GABA. Neuroscience, 1987, 22, 425-439.	1.1	332
10	Heteropolymeric potassium channels expressed in xenopus oocytes from cloned subunits. Neuron, 1990, 4, 405-411.	3.8	239
11	Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nature Communications, 2019, 10, 367.	5.8	226
12	Excitotoxin lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area. Brain Research, 1985, 333, 169-172.	1.1	219
13	Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Science Signaling, 2020, 13, .	1.6	219
14	Increase by the ORL ₁ receptor (opioid receptorâ€like ₁) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones. British Journal of Pharmacology, 1996, 117, 1609-1611.	2.7	215
15	OPIOID RECEPTOR SIGNALLING MECHANISMS. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 493-499.	0.9	207
16	Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones <i>in vitro</i> . British Journal of Pharmacology, 1996, 119, 1614-1618.	2.7	206
17	Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro Journal of Physiology, 1997, 498, 463-472.	1.3	203
18	Expression of a cloned rat brain potassium channel in Xenopus oocytes. Science, 1989, 244, 221-224.	6.0	198

#	Article	IF	CITATIONS
19	Analysis of opioid efficacy, tolerance, addiction and dependence from cell culture to human. British Journal of Pharmacology, 2011, 164, 1322-1334.	2.7	197
20	Cellular mechanisms of opioid tolerance: studies in single brain neurons. Molecular Pharmacology, 1987, 32, 633-8.	1.0	197
21	Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nature Structural Biology, 2000, 7, 505-513.	9.7	194
22	Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats. Journal of Neuroscience, 1989, 9, 3584-3589.	1.7	189
23	Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. Molecular Pharmacology, 2000, 57, 288-95.	1.0	188
24	ÂO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17030-17035.	3.3	184
25	Morphineâ€induced respiratory depression is independent of βâ€arrestin2 signalling. British Journal of Pharmacology, 2020, 177, 2923-2931.	2.7	182
26	The structure of a novel insecticidal neurotoxin, ω-atracotoxin-HV1, from the venom of an Australian funnel web spider. Nature Structural Biology, 1997, 4, 559-566.	9.7	172
27	Gingerols: a novel class of vanilloid receptor (VR1) agonists. British Journal of Pharmacology, 2002, 137, 793-798.	2.7	171
28	Actions of the ORL ₁ Receptor Ligand Nociceptin on Membrane Properties of Rat Periaqueductal Gray Neurons <i>In Vitro</i> . Journal of Neuroscience, 1997, 17, 996-1003.	1.7	168
29	Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Science Translational Medicine, 2017, 9, .	5.8	158
30	Enhanced Opioid Efficacy in Opioid Dependence Is Caused by an Altered Signal Transduction Pathway. Journal of Neuroscience, 1998, 18, 10269-10276.	1.7	150
31	An Excitant Amino Acid Projection from the Medial Prefrontal Cortex to the Anterior Part of Nucleus Accumbens in the Rat. Journal of Neurochemistry, 1985, 45, 477-482.	2.1	147
32	Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus In vitro. Journal of Physiology, 2002, 543, 531-540.	1.3	146
33	Opioid Agonists Have Different Efficacy Profiles for G Protein Activation, Rapid Desensitization, and Endocytosis of Mu-opioid Receptors. Journal of Biological Chemistry, 2003, 278, 18776-18784.	1.6	142
34	Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels Journal of Biological Chemistry, 1991, 266, 7583-7587.	1.6	139
35	Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons. British Journal of Pharmacology, 2012, 165, 1704-1716.	2.7	138
36	Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12309-12314.	3.3	136

#	Article	IF	CITATIONS
37	Cannabinoids and cancer: causation, remediation, and palliation. Lancet Oncology, The, 2005, 6, 35-42.	5.1	132
38	Agonists at μâ€opioid, M ₂ â€muscarinic and GABA _B â€receptors increase the same potassium conductance in rat lateral parabrachial neurones. British Journal of Pharmacology, 1988, 95, 896-902.	2.7	125
39	Cannabinoid receptor activation inhibits GABAergic neurotransmission in rostral ventromedial medulla neurons in vitro. British Journal of Pharmacology, 1999, 127, 935-940.	2.7	124
40	Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels. Journal of Biological Chemistry, 1991, 266, 7583-7.	1.6	124
41	Where is the locus in opioid withdrawal?. Trends in Pharmacological Sciences, 1997, 18, 134-140.	4.0	122
42	Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Scientific Reports, 2017, 7, 40883.	1.6	120
43	Opioid inhibition of rat periaqueductal grey neurones with identified projections to rostral ventromedial medulla in vitro Journal of Physiology, 1996, 490, 383-389.	1.3	118
44	Challenges for opioid receptor nomenclature: IUPHAR Review 9. British Journal of Pharmacology, 2015, 172, 317-323.	2.7	115
45	Hyperpolarization by opioids acting on μâ€receptors of a subâ€population of rat periaqueductal gray neurones <i>in vitro</i> . British Journal of Pharmacology, 1994, 113, 121-128.	2.7	112
46	Single potassium channels opened by opioids in rat locus ceruleus neurons Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3419-3422.	3.3	111
47	Characterization of neurons in the rat central nucleus of the amygdala: Cellular physiology, morphology, and opioid sensitivity. Journal of Comparative Neurology, 2006, 497, 910-927.	0.9	110
48	Modulation of Ca2+channel currents of acutely dissociated rat periaqueductal grey neurons. Journal of Physiology, 1998, 509, 47-58.	1.3	108
49	Are α9α10 Nicotinic Acetylcholine Receptors a Pain Target for α-Conotoxins?. Molecular Pharmacology, 2007, 72, 1406-1410.	1.0	106
50	The Acquisition of Goal-Directed Actions Generates Opposing Plasticity in Direct and Indirect Pathways in Dorsomedial Striatum. Journal of Neuroscience, 2014, 34, 9196-9201.	1.7	105
51	Inhibition by opioids acting on μâ€receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurones <i>in vitro</i> . British Journal of Pharmacology, 1994, 113, 303-309.	2.7	99
52	μ -Opioid receptor desensitization: Is morphine different?. British Journal of Pharmacology, 2004, 143, 685-696.	2.7	99
53	Medial prefrontal cortical lesions modulate baroreflex sensitivity in the rat. Brain Research, 1987, 426, 243-249.	1.1	98
54	Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Science Signaling, 2018, 11, .	1.6	97

#	Article	IF	CITATIONS
55	Distinct cellular properties of identified dopaminergic and GABAergic neurons in the mouse ventral tegmental area. Journal of Physiology, 2011, 589, 3775-3787.	1.3	95
56	Rostral Ventromedial Medulla Neurons That Project to the Spinal Cord Express Multiple Opioid Receptor Phenotypes. Journal of Neuroscience, 2002, 22, 10847-10855.	1.7	93
57	Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor. Trends in Pharmacological Sciences, 2020, 41, 947-959.	4.0	91
58	Excitatory amino acid projections to the periaqueductal gray in the rat: A retrograde transport study utilizing d[3H]aspartate and [3H]GABA. Neuroscience, 1990, 34, 163-176.	1.1	90
59	Pathobiology of dynorphins in trauma and disease. Frontiers in Bioscience - Landmark, 2005, 10, 216.	3.0	89
60	Total Synthesis of the Analgesic Conotoxin MrVIB through Selenocysteineâ€Assisted Folding. Angewandte Chemie - International Edition, 2011, 50, 6527-6529.	7.2	88
61	Physical dependence on physiologically released endogenous opiates. Life Sciences, 1982, 30, 1173-1177.	2.0	84
62	Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature, 2021, 597, 571-576.	13.7	84
63	Discovery and Structure of a Potent and Highly Specific Blocker of Insect Calcium Channels. Journal of Biological Chemistry, 2001, 276, 40306-40312.	1.6	79
64	Nociceptin inhibits calcium channel currents in a subpopulation of small nociceptive trigeminal ganglion neurons in mouse. Journal of Physiology, 2001, 536, 35-47.	1.3	79
65	Switch to Ca ²⁺ â€permeable AMPA and reduced NR2B NMDA receptorâ€mediated neurotransmission at dorsal horn nociceptive synapses during inflammatory pain in the rat. Journal of Physiology, 2008, 586, 515-527.	1.3	77
66	A novel mechanism of inhibition of high-voltage activated calcium channels by \hat{I}_{\pm} -conotoxins contributes to relief of nerve injury-induced neuropathic pain. Pain, 2011, 152, 259-266.	2.0	77
67	Cellular Actions Of Opioids And Other Analgesics: Implications For Synergism In Pain Relief. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 520-523.	0.9	76
68	Induction of Â-Opioid Receptor Function in the Midbrain after Chronic Morphine Treatment. Journal of Neuroscience, 2005, 25, 3192-3198.	1.7	75
69	Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro. Neuropharmacology, 2003, 45, 575-584.	2.0	74
70	Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine. British Journal of Pharmacology, 2005, 146, 68-76.	2.7	72
71	GABA Transporter Currents Activated by Protein Kinase A Excite Midbrain Neurons during Opioid Withdrawal. Neuron, 2005, 45, 433-445.	3.8	72
72	Characterization and functional expression of a rat genomic DNA clone encoding a lymphocyte potassium channel. Journal of Immunology, 1990, 144, 4841-50.	0.4	72

#	Article	IF	CITATIONS
73	Retrograde Signalling by Endocannabinoids. , 2005, , 367-383.		69
74	Glycine transport inhibitors for the treatment of pain. Trends in Pharmacological Sciences, 2014, 35, 423-430.	4.0	69
75	Anandamide is a partial agonist at native vanilloid receptors in acutely isolated mouse trigeminal sensory neurons. British Journal of Pharmacology, 2002, 137, 421-428.	2.7	68
76	Local Opioid Withdrawal in Rat Single Periaqueductal Gray Neurons <i>In Vitro</i> . Journal of Neuroscience, 1996, 16, 7128-7136.	1.7	66
77	Increased fos-like immunoreactivity in the periaqueductal gray of anaesthetised rats during opiate withdrawal. Neuroscience Letters, 1995, 183, 79-82.	1.0	65
78	μ-opioid receptor modulation of calcium channel current in periaqueductal grey neurons from C57B16/J mice and mutant mice lacking MOR-1. British Journal of Pharmacology, 1999, 126, 1553-1558.	2.7	65
79	The Anxiogenic-Like and Anxiolytic-Like Effects of MDMA on Mice in the Elevated Plus-Maze A Comparison With Amphetamine. Pharmacology Biochemistry and Behavior, 1999, 62, 403-408.	1.3	65
80	Cardiovascular effects of microinjections of opioid agonists into the `Depressor Region' of the ventrolateral periaqueductal gray region. Brain Research, 1997, 762, 61-71.	1.1	64
81	Depressive symptoms during buprenorphine vs. methadone maintenance: findings from a randomised, controlled trial in opioid dependence. European Psychiatry, 2004, 19, 510-513.	0.1	64
82	Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells. Biochemical Pharmacology, 2012, 83, 1562-1571.	2.0	64
83	Dye-coupling among neurons of the rat locus coeruleus during postnatal development. Neuroscience, 1993, 56, 129-137.	1.1	63
84	Cellular Morphine Tolerance Produced by βArrestin-2-Dependent Impairment of μ-Opioid Receptor Resensitization. Journal of Neuroscience, 2011, 31, 7122-7130.	1.7	62
85	Cannabinoid actions on rat superficial medullary dorsal horn neurons in vitro. Journal of Physiology, 2001, 534, 805-812.	1.3	61
86	A Continuous, Fluorescence-based Assay of µ-Opioid Receptor Activation in AtT-20 Cells. Journal of Biomolecular Screening, 2013, 18, 269-276.	2.6	61
87	Inhibition of fatty acid amide hydrolase unmasks CB ₁ receptor and TRPV1 channelâ€mediated modulation of glutamatergic synaptic transmission in midbrain periaqueductal grey. British Journal of Pharmacology, 2011, 163, 1214-1222.	2.7	60
88	Adaptations in Adenosine Signaling in Drug Dependence: Therapeutic Implications. Critical Reviews in Neurobiology, 2004, 15, 235-274.	3.3	60
89	Serotonergic and Nonserotonergic Dorsal Raphe Neurons Are Pharmacologically and Electrophysiologically Heterogeneous. Journal of Neurophysiology, 2004, 92, 3532-3537.	0.9	59
90	Learning-Related Translocation of δ-Opioid Receptors on Ventral Striatal Cholinergic Interneurons Mediates Choice between Goal-Directed Actions. Journal of Neuroscience, 2013, 33, 16060-16071.	1.7	59

#	Article	IF	CITATIONS
91	The correlation between swim-stress induced antinociception and [3H] leu-enkephalin binding to brain homogenates in mice. Pharmacology Biochemistry and Behavior, 1981, 15, 853-857.	1.3	58
92	MOLECULAR AND FUNCTIONAL DIVERSITY OF K+CHANNELS. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 944-951.	0.9	57
93	Opioids, NSAIDs and 5-lipoxygenase inhibitors act synergistically in brain via arachidonic acid metabolism. Inflammation Research, 1999, 48, 1-4.	1.6	57
94	Analgesic ω-Conotoxins CVIE and CVIF Selectively and Voltage-Dependently Block Recombinant and Native N-Type Calcium Channels. Molecular Pharmacology, 2010, 77, 139-148.	1.0	57
95	Isolation and pharmacological characterisation of δ-atracotoxin-Hv1b, a vertebrate-selective sodium channel toxin. FEBS Letters, 2000, 470, 293-299.	1.3	56
96	Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain. Scientific Reports, 2016, 6, 37104.	1.6	56
97	Intrathecal α-conotoxins Vc1.1, AulB and MII acting on distinct nicotinic receptor subtypes reverse signs of neuropathic pain. Neuropharmacology, 2012, 62, 2202-2207.	2.0	54
98	A Positive Allosteric Modulator of the Adenosine A ₁ Receptor Selectively Inhibits Primary Afferent Synaptic Transmission in a Neuropathic Pain Model. Molecular Pharmacology, 2015, 88, 460-468.	1.0	53
99	The actions of anandamide on rat superficial medullary dorsal horn neurons in vitro. Journal of Physiology, 2003, 548, 121-129.	1.3	52
100	Actions of nociceptin/orphanin FQ and other prepronociceptin products on rat rostral ventromedial medulla neurons in vitro. Journal of Physiology, 2001, 534, 849-859.	1.3	51
101	Mu opioid receptors in rat ventral medulla: effects of endomorphin-1 on phrenic nerve activity. Respiratory Physiology and Neurobiology, 2003, 138, 165-178.	0.7	51
102	Swim-stress but not opioid withdrawal increases expression of c-Fos immunoreactivity in rat periaqueductal gray neurons which project to the rostral ventromedial medulla. Neuroscience, 1998, 83, 517-524.	1.1	50
103	Two Distinct Mechanisms Mediate Acute μ-Opioid Receptor Desensitization in Native Neurons. Journal of Neuroscience, 2009, 29, 3322-3327.	1.7	50
104	Nucleus accumbens D2- and D1-receptor expressing medium spiny neurons are selectively activated by morphine withdrawal and acute morphine, respectively. Neuropharmacology, 2012, 62, 2463-2471.	2.0	50
105	Potentiation of enkephalin action by peptidase inhibitors in rat locus ceruleus in vitro. Journal of Pharmacology and Experimental Therapeutics, 1987, 243, 397-401.	1.3	49
106	Mechanisms of opioid actions on neurons of the locus coeruleus. Progress in Brain Research, 1991, 88, 197-205.	0.9	48
107	Intrinsic Efficacy of Opioid Ligands and Its Importance for Apparent Bias, Operational Analysis, and Therapeutic Window. Molecular Pharmacology, 2020, 98, 410-424.	1.0	48
108	Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors. Nature Neuroscience, 2011, 14, 1548-1554.	7.1	47

7

#	Article	IF	CITATIONS
109	Isolation of a funnel-web spider polypeptide with homology to mamba intestinal toxin 1 and the embryonic head inducer Dickkopf-1. Toxicon, 2000, 38, 429-442.	0.8	46
110	Plasticity in striatopallidal projection neurons mediates the acquisition of habitual actions. European Journal of Neuroscience, 2015, 42, 2097-2104.	1.2	46
111	Developmental aspects of the locus coeruleus-noradrenaline system. Progress in Brain Research, 1991, 88, 173-185.	0.9	45
112	Stabilization of the Cysteineâ€Rich Conotoxin MrIA by Using a 1,2,3â€Triazole as a Disulfide Bond Mimetic. Angewandte Chemie - International Edition, 2015, 54, 1361-1364.	7.2	45
113	Comparison of binding parameters of Ïf1 and Ïf2 binding sites in rat and guinea pig brain membranes: novel subtype-selective trishomocubanes. European Journal of Pharmacology, 1996, 311, 233-240.	1.7	44
114	Effect of Excitotoxin Lesions in the Medial Prefrontal Cortex on Cortical and Subcortical Catecholamine Turnover in the Rat. Journal of Neurochemistry, 1986, 47, 1593-1597.	2.1	43
115	Inhibition by adenosine receptor agonists of synaptic transmission in rat periaqueductal grey neurons. Journal of Physiology, 1999, 516, 219-225.	1.3	43
116	Conotoxin Interactions with α9α10-nAChRs: Is the α9α10-Nicotinic Acetylcholine Receptor an Important Therapeutic Target for Pain Management?. Toxins, 2015, 7, 3916-3932.	1.5	43
117	Tolerance and cross tolerance with morphine resulting from physiological release of endogenous opiates. Life Sciences, 1982, 31, 839-845.	2.0	41
118	Cellular actions of opioids on periaqueductal grey neurons from C57B16/J mice and mutant mice lacking MOR-1. British Journal of Pharmacology, 2003, 139, 362-367.	2.7	41
119	Role of Phosphorylation Sites in Desensitization of <i>µ</i> -Opioid Receptor. Molecular Pharmacology, 2015, 88, 825-835.	1.0	40
120	Nociceptin, Phe1 Ï^-nociceptin1-13 , nocistatin and prepronociceptin154-181 effects on calcium channel currents and a potassium current in rat locus coeruleus in vitro. British Journal of Pharmacology, 1999, 128, 1779-1787.	2.7	39
121	Effects of sumatriptan on rat medullary dorsal horn neurons. Pain, 2004, 111, 30-37.	2.0	39
122	The Role of Opioid Receptor Phosphorylation and Trafficking in Adaptations to Persistent Opioid Treatment. NeuroSignals, 2005, 14, 290-302.	0.5	39
123	Multiple mechanisms of microglia: A gatekeeper's contribution to pain states. Experimental Neurology, 2012, 234, 255-261.	2.0	39
124	Continued morphine modulation of calcium channel currents in acutely isolated locus coeruleus neurons from morphine-dependent rats. British Journal of Pharmacology, 1999, 128, 1561-1569.	2.7	38
125	Lesions to terminals of noradrenergic locus coeruleus neurones do not inhibit opiate withdrawal behaviour in rats. Neuroscience Letters, 1995, 186, 37-40.	1.0	37
126	Cannabinoids act backwards. Nature, 2001, 410, 527-530.	13.7	37

#	Article	IF	CITATIONS
127	Prostaglandin E2inhibits calcium current in two subâ€populations of acutely isolated mouse trigeminal sensory neurons. Journal of Physiology, 2002, 539, 433-444.	1.3	35
128	Inflammation reduces the contribution of N-type calcium channels to primary afferent synaptic transmission onto NK1 receptor-positive lamina I neurons in the rat dorsal horn. Journal of Physiology, 2007, 580, 883-894.	1.3	35
129	α9-Nicotinic Acetylcholine Receptors Contribute to the Maintenance of Chronic Mechanical Hyperalgesia, but Not Thermal or Mechanical Allodynia. Molecular Pain, 2014, 10, 1744-8069-10-64.	1.0	35
130	Trishomocubanes: novel σ-receptor ligands modulate amphetamine-stimulated [3H]dopamine release. European Journal of Pharmacology, 2001, 422, 39-45.	1.7	34
131	Opioid receptor modulation of GABAergic and serotonergic spinally projecting neurons of the rostral ventromedial medulla in mice. Journal of Neurophysiology, 2011, 106, 731-740.	0.9	33
132	Opioidâ€related (ORL1) receptors are enriched in a subpopulation of sensory neurons and prolonged activation produces no functional loss of surface Nâ€type calcium channels. Journal of Physiology, 2012, 590, 1655-1667.	1.3	32
133	Vicinal Disulfide Constrained Cyclic Peptidomimetics: a Turn Mimetic Scaffold Targeting the Norepinephrine Transporter. Angewandte Chemie - International Edition, 2013, 52, 12020-12023.	7.2	32
134	A randomised, controlled trial of fluoxetine in methadone maintenance patients with depressive symptoms. Journal of Affective Disorders, 2002, 72, 85-90.	2.0	31
135	Chronic morphine treatment induces functional delta-opioid receptors in amygdala neurons that project to periaqueductal grey. Neuropharmacology, 2009, 57, 430-437.	2.0	31
136	MrIC, a Novel α-Conotoxin Agonist in the Presence of PNU at Endogenous α7 Nicotinic Acetylcholine Receptors. Biochemistry, 2014, 53, 1-3.	1.2	31
137	A tetrapeptide class of biased analgesics from an Australian fungus targets the µ-opioid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22353-22358.	3.3	31
138	Sensitivity of morphine-tolerant rats to muscarinic and dopaminergic agonists: Relation to tolerance or withdrawal. Psychopharmacology, 1979, 65, 27-34.	1.5	30
139	Long-term d-amphetamine in rats: Lack of change in post-synaptic dopamine receptor sensitivity. Psychopharmacology, 1981, 73, 276-280.	1.5	29
140	Serotonergic modulation of 3,4-methylenedioxymethamphetamine (MDMA)-elicited reduction of response rate but not rewarding threshold in accumbal self-stimulation. Brain Research, 1997, 744, 351-357.	1.1	29
141	High-resolution solution structure of gurmarin, a sweet-taste-suppressing plant polypeptide. FEBS Journal, 1999, 264, 525-533.	0.2	29
142	Expression of mRNA and functional alpha1 -adrenoceptors that suppress the GIRK conductance in adult rat locus coeruleus neurons. British Journal of Pharmacology, 2002, 135, 226-232.	2.7	29
143	βâ€Arrestinâ€2 knockout prevents development of cellular μâ€opioid receptor tolerance but does not affect opioidâ€withdrawalâ€related adaptations in single <scp>PAG</scp> neurons. British Journal of Pharmacology, 2015, 172, 492-500.	2.7	29
144	Presynaptic Δ opioid receptors differentially modulate rhythm and pattern generation in the ventral respiratory group of the rat. Neuroscience, 2003, 121, 959-973.	1.1	28

#	Article	IF	CITATIONS
145	Development of an <i>N</i> -Acyl Amino Acid That Selectively Inhibits the Glycine Transporter 2 To Produce Analgesia in a Rat Model of Chronic Pain. Journal of Medicinal Chemistry, 2019, 62, 2466-2484.	2.9	28
146	Distribution of neuropeptide Y immunoreactivity in the rat basal ganglia: Effects of excitotoxin lesions to caudate-putamen. Neuroscience Letters, 1986, 63, 305-309.	1.0	27
147	Morphine-6β -glucuronide has a higher efficacy than morphine as a mu-opioid receptor agonist in the rat locus coeruleus. British Journal of Pharmacology, 2000, 131, 1422-1428.	2.7	27
148	Cellular actions of somatostatin on rat periaqueductal grey neurons in vitro. British Journal of Pharmacology, 2004, 142, 1273-1280.	2.7	26
149	Glutamate transporter dysfunction associated with nerve injury-induced pain in mice. Journal of Neurophysiology, 2012, 107, 649-657.	0.9	26
150	Excitatory amino acid projections to the nucleus of the solitary tract in the rat: a retrograde transport study utilizing d-[3H]aspartate and [3H]GABA. Journal of the Autonomic Nervous System, 1994, 50, 109-122.	1.9	25
151	Hyperpolarization by GABA _B receptor agonists in midâ€brain periaqueductal gray neurones <i>in vitro</i> . British Journal of Pharmacology, 1995, 116, 1583-1588.	2.7	25
152	Trishomocubanes: Novel σ ligands modulate cocaine-induced behavioural effects. European Journal of Pharmacology, 2007, 555, 37-42.	1.7	25
153	Spinal actions of ωâ€conotoxins, <scp>CVID</scp> , <scp>MVIIA</scp> and related peptides in a rat neuropathic pain model. British Journal of Pharmacology, 2013, 170, 245-254.	2.7	25
154	High-voltage-activated calcium current subtypes in mouse DRG neurons adapt in a subpopulation-specific manner after nerve injury. Journal of Neurophysiology, 2015, 113, 1511-1519.	0.9	25
155	Differential responses of lateral and ventrolateral rat periaqueductal grey neurones to noradrenaline in vitro Journal of Physiology, 1996, 490, 373-381.	1.3	24
156	Trishomocubanes, a new class of selective and high affinity ligands for the sigma binding site. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 595-600.	1.0	23
157	Lack of correlations between plasma concentration of medroxyprogesterone acetate, hypothalamic-pituitary function, and tumour response in patients with advanced breast cancer. Cancer Chemotherapy and Pharmacology, 1985, 14, 112-115.	1.1	22
158	No change in neostriatal D-2 dopamine receptors after NMDA lesions of rat prefrontal cortex. Pharmacology Biochemistry and Behavior, 1986, 24, 1829-1832.	1.3	22
159	Constrasting effects of dopaminergic blockade on MDMA and d-amphetamine conditioned taste aversions. Pharmacology Biochemistry and Behavior, 1994, 47, 369-374.	1.3	22
160	Cortistatin increase of a potassium conductance in rat locus coeruleus in vitro. British Journal of Pharmacology, 1997, 122, 1567-1572.	2.7	22
161	Opioid and cannabinoid receptors: friends with benefits or just close friends?. British Journal of Pharmacology, 2006, 148, 385-386.	2.7	22
162	Chemical Synthesis and Structure of the Prokineticin Bv8. ChemBioChem, 2010, 11, 1882-1888.	1.3	22

#	Article	IF	CITATIONS
163	Prolonged Stimulation of μ-Opioid Receptors Produces β-Arrestin-2-Mediated Heterologous Desensitization of α ₂ -Adrenoceptor Function in Locus Ceruleus Neurons. Molecular Pharmacology, 2012, 82, 473-480.	1.0	22
164	α9-nAChR knockout mice exhibit dysregulation of stress responses, affect and reward-related behaviour. Behavioural Brain Research, 2017, 328, 105-114.	1.2	22
165	Novel analgesic ω-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the evolution of conopeptides. Scientific Reports, 2018, 8, 13397.	1.6	22
166	ATP potentiates neurotransmission in the rat trigeminal subnucleus caudalis. NeuroReport, 2006, 17, 1507-1510.	0.6	21
167	Somatostatin and nociceptin inhibit neurons in the central nucleus of amygdala that project to the periaqueductal grey. Neuropharmacology, 2010, 59, 425-430.	2.0	20
168	Transmitter regulation of voltage-dependent K+ channels expressed in Xenopus oocytes. Biochemical Journal, 1991, 277, 899-902.	1.7	19
169	[3H]Leu-enkephalin binding following chronic swim-stress in mice. Neuroscience Letters, 1983, 36, 323-328.	1.0	16
170	An excitatory amino acid projection from rat prefrontal cortex to periaqueductal gray. Brain Research Bulletin, 1986, 16, 127-129.	1.4	16
171	Effects of nigral dopaminergic lesions and striatal excitotoxin lesions on brain converting enzyme. Neurochemistry International, 1987, 10, 101-107.	1.9	16
172	The tarantula toxin \hat{l}^2/\hat{l}^2 -TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Scientific Reports, 2017, 7, 974.	1.6	16
173	Comparison of conditioned taste aversions produced by MDMA and d-amphetamine. Pharmacology Biochemistry and Behavior, 1993, 46, 153-156.	1.3	15
174	Generators of synchronous activity of the locus coeruleus during development. Seminars in Cell and Developmental Biology, 1997, 8, 29-34.	2.3	15
175	Delta pioid receptor immunoreactive boutons appose bulbospinal CI neurons in the rat. NeuroReport, 2000, 11, 887-891.	0.6	15
176	Trishomocubanes: Requirements for σ Receptor Binding and Subtype Selectivity. Australian Journal of Chemistry, 2001, 54, 31.	0.5	15
177	Endocannabinoids Can Open the Pain Gate. Science Signaling, 2009, 2, pe57.	1.6	15
178	Human Chorionic Gonadotropin Increases β-Cleavage of Amyloid Precursor Protein in SH-SY5Y Cells. Cellular and Molecular Neurobiology, 2013, 33, 747-751.	1.7	15
179	μâ€Opioid receptor activation and noradrenaline transport inhibition by tapentadol in rat single locus coeruleus neurons. British Journal of Pharmacology, 2015, 172, 460-468.	2.7	15
180	Chronic L-Dopa treatment of rats and mice does not change the sensitivity of post-synaptic dopamine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1983, 324, 271-274.	1.4	14

#	Article	IF	CITATIONS
181	σ-Binding site ligands inhibit K+ currents in rat locus coeruleus neurons in vitro. European Journal of Pharmacology, 1998, 361, 157-163.	1.7	14
182	Conotoxins That Could Provide Analgesia through Voltage Gated Sodium Channel Inhibition. Toxins, 2015, 7, 5386-5407.	1.5	14
183	The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP)] produces a nonopioid receptor-mediated increase in K+ conductance of rat locus ceruleus neurons. Molecular Pharmacology, 1996, 50, 650-5.	1.0	14
184	δ-opioid receptor-mediated actions on rostral ventromedial medulla neurons. Neuroscience, 2005, 132, 239-244.	1.1	13
185	Synthesis and Binding Studies of Trishomocubanes: Novel Ligands for σ Binding Sites. Australian Journal of Chemistry, 1999, 52, 653.	0.5	12
186	An analgesic role for cannabinoids. Medical Journal of Australia, 2000, 173, 270-272.	0.8	12
187	Opioids acting on δ-receptors modulate Ca2+ currents in cultured postganglionic neurones of avian ciliary ganglia. Neuroscience Letters, 1995, 193, 21-24.	1.0	11
188	Activity of novel lipid glycine transporter inhibitors on synaptic signalling in the dorsal horn of the spinal cord. British Journal of Pharmacology, 2018, 175, 2337-2347.	2.7	11
189	Electrophysiological Actions of N/OFQ. Handbook of Experimental Pharmacology, 2019, 254, 91-130.	0.9	11
190	Behavioral Consequences of Delta-Opioid Receptor Activation in the Periaqueductal Gray of Morphine Tolerant Rats. Neural Plasticity, 2009, 2009, 1-7.	1.0	10
191	Enhanced Fos expression in glutamic acid decarboxylase immunoreactive neurons of the mouse periaqueductal grey during opioid withdrawal. Neuroscience, 2006, 137, 1389-1396.	1.1	9
192	Novel ω-Conotoxins from <i>C. Catus</i> Reverse Signs of Mouse Inflammatory Pain after Systemic Administration. Molecular Pain, 2013, 9, 1744-8069-9-51.	1.0	9
193	Vicinal Disulfide Constrained Cyclic Peptidomimetics: a Turn Mimetic Scaffold Targeting the Norepinephrine Transporter. Angewandte Chemie, 2013, 125, 12242-12245.	1.6	9
194	Pharmacological options for management of opioid dependence. Drug and Alcohol Review, 1993, 12, 71-80.	1.1	8
195	Inhibition of the norepinephrine transporter by χâ€conotoxin dendrimers. Journal of Peptide Science, 2016, 22, 280-289.	0.8	8
196	Chronic Morphine Reduces Surface Expression of δ-Opioid Receptors in Subregions of Rostral Striatum. Neurochemical Research, 2016, 41, 500-509.	1.6	8
197	Regional specificity of changes in [3H]Leu-enkephalin binding associated with warm water swimming in mice. Neuroscience Letters, 1982, 33, 197-202.	1.0	7
198	In vitro and in vivo characterisation of [3H]ANSTO-14 binding to the $if1$ binding sites. Nuclear Medicine and Biology, 1999, 26, 209-215.	0.3	7

1399 No endonce for a protracted change in endogeness ontold activity following chronic opsite Psychophannacology, 1984, 82, 378-381. 1.6 6 200 Enhanced of 56 in pertaqueductal grey CABAergic neurons during opbild withdrawal. NeuroReport, 2005, 16, 1279-1283. 0.6 6 201 Cannabia medicine without a high. Nature Chemical Biology, 2011, 7, 249-250. 0.0 0.0 202 Substance P and dopamine interact to modulate the distribution of deflat&6piold receptors on Neuropsychophannacology, 2021, 46, 2226-2227. 2.8 0 203 Opbild overdose and tolerance: is the recruitment of 12-arrestin to the Åpreceptor involved?. 2.8 0 204 Schedule-induced drinking in the rat. Behavioural Brain Research, 1986, 19, 183-186. 1.2 5 205 Figh-transcology, 2021, 46, 2226-2227. 1.1 5 205 Figh-transcology, 2021, 46, 2226-2227. 1.1 5 204 Schedule-induced drinking in the rat. Behavioural Brain Research, 1986, 19, 183-186. 1.1 5 205 Figh-transcology, 2021, 46, 2226-2227. 1.1 5 206 Hydroxydopamine and excitotion in legions of medial perfontal cortex fail to affect 1.2 6 206 Figh-transcology, 2020, 11, 635679. 1.1 5	#	Article	IF	CITATIONS
2005 2005, 16, 1279-1283. 0.05 6 201 Cannabis medicine without a high. Nature Chemical Biology, 2011, 7, 249-250. 3.9 6 202 Substance P and dopamine interact to modulate the distribution of delta&opioid receptors on cholmergic interneurons in the stratum. European Journal of Neuroscience, 2018, 47, 1159-1173. 1.2 6 203 Opioid overdose and tolerance is the recruitment of Parrestin to the Ap+receptor involved?. 2.6 6 204 Schedule-induced drinking in the stratument of Parrestin to the Ap+receptor involved?. 2.6 6 204 Schedule-induced drinking in the stratument of Parrestin to the Ap+receptor involved?. 2.6 6 205 Fibe human toxicity of marijuana: a critique of a review by Nahas and Latour. Drug and Alcohol Review, 1995, 14, 27-34. 1.1 5 205 Fiber Vonon Peptide Ph3a Inhibition of Primary Afferent High Voltage-Activated Calcium Channels. 1.0 5 205 Fiber Vonon Peptide Ph3a Inhibition of Primary Afferent High Voltage-Activated Calcium Channels. 1.0 5 206 Method of sacrifice influences leucine enkephalin binding to mouse brain. Pharmacology 1.3 4 207 Fiberlatice influences leucine enkephalin binding to mouse brain. Pharmacology 1.3 4 208	199	treatment in mice: parallel recovery of cross tolerance to stress and morphine antinociception.	1.5	6
202 Substance P and dopamine interact to modulate the distribution of delta&Eopioid receptors on cholinergic interneurons in the striatum. European journal of Neuroscience, 2018, 47, 1159-1173. 1.2 6 203 Opioid overdose and tolerance: is the recruitment of I ² -arrestin to the ŵ-receptor involved?. 2.8 6 204 E-Hydroxydopamine and excitotoxin lesions of medial prefrontal cortex fail to affect. 1.2 8 205 E-Hydroxydopamine and excitotoxin lesions of medial prefrontal cortex fail to affect. 1.2 8 206 Measuring heroin use in methadone maintenance programmes. Drug and Alcohol Review, 1995, 14, 27-34. 1.1 5 207 Spider Venom Peptide Ph3a Inhibition of Primary Afferent High Voltage-Activated Calcium Channels. 1.6 5 208 Boensmitry and Behavior, 1981, 15, 849-851. 1.3 4 209 The Relationship Between Amphetamine Use, Crime and Psychiatric Disorder Among Prisoners in New 0.9 4 210 Functional coupling of IV-receptor-GE+techered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796. 0.6 4 210 Functional coupling of IV-receptor-GE+techered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796. 0.6 4 210 Functional coupling of IV-receptor-GE+techered proteins in AtT20 cells. NeuroReport, 2008, 19, 17	200		0.6	6
202 cholinergic interneurons in the striatum. European Journal of Neuroscience, 2018, 47, 1159-1173. 1.2 6 200 Optiold overdose and tolerance: is the recruitment of I ² -arrestin to the ŵ-receptor Involved?. 2.8 6 204 6-Hydroxydopamine and excitotoxin lesions of medial prefrontal cortex fail to affect schedule-induced drinking in the rat. Behavioural Brain Research, 1986, 19, 183-186. 1.2 5 204 6-Hydroxydopamine and excitotoxin lesions of medial prefrontal cortex fail to affect schedule-induced drinking in the rat. Behavioural Brain Research, 1986, 19, 183-186. 1.2 5 204 6-Hydroxydopamine and excitotoxin lesions of medial prefrontal cortex fail to affect schedule-induced drinking in the rat. Behavioural Brain Research, 1986, 19, 183-186. 1.2 5 205 The human toxicity of marijuana: a critique of a review by Nahas and Latour. Drug and Alcohol Review, 1995, 14, 27-34. 1.1 5 206 Measuring heroin use in methadone maintenance programmes. Drug and Alcohol Review, 1995, 14, 27-34. 1.1 5 207 Spider Venom Peptide Ph3a Inhibition of Primary Afferent High Voltage-Activated Calcium Channels. 1.6 5 208 Method of sacrifice influences leucine enkephalin binding to mouse brain. Pharmacology 1.3 4 209 The Relationship Between Amphetamine Use, Crime and Psychiatric Disorder Among Prisone	201	Cannabis medicine without a high. Nature Chemical Biology, 2011, 7, 249-250.	3.9	6
205 Neuropsychopharmacology, 2021, 46, 2226-2227. 216 216 6 204 6-Hydroxydopamine and excitotoxin lesions of medial prefrontal cortex fail to affect schedule-induced drinking in the rat. Behavioural Brain Research, 1986, 19, 183-186. 1.2 5 205 The human toxicity of marijuana: a critique of a review by Nahas and Latour. Drug and Alcohol Review, 1994, 13, 209-216. 1.1 5 206 Measuring heroin use in methadone maintenance programmes. Drug and Alcohol Review, 1995, 14, 27-34. 1.1 5 207 Fontiers in Pharmacology, 2020, 11, 633679. 1.6 5 208 Method of sacrifice influences leucine enkephalin binding to mouse brain. Pharmacology Biochemistry and Behavior, 1981, 15, 849-851. 1.6 5 209 The Relationship Between Amphetamine Use, Crime and Psychiatric Disorder Among Prisoners in New South Wales. Psychiatry, Psychology and Law, 2006, 13, 160-165. 0.9 4 210 Functional coupling of I¼-receptor-Glai-tethered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796. 0.6 4 211 The human toxicity of marijuana. Medical Journal of Australia, 1994, 161, 338-338. 0.8 4 210 Functional coupling of I¼-receptor-Glai-tethered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796. 0.6 4 211 The human toxi	202		1.2	6
204 schedule-induced drinking in the rat. Behavioural Brain Research, 1986, 19, 183-186. 1.2 5 205 The human toxicity of marijuana: a critique of a review by Nahas and Latour. Drug and Alcohol Review, 1995, 14, 27-34. 1.1 5 206 Measuring heroin use in methadone maintenance programmes. Drug and Alcohol Review, 1995, 14, 27-34. 1.1 5 207 Spider Venom Peptide Pn3a Inhibition of Primary Afferent High Voltage-Activated Calcium Channels. 1.6 5 208 Method of sacrifice influences leucine enkephalin binding to mouse brain. Pharmacology 1.3 4 209 The Relationship Between Amphetamine Use, Crime and Psychiatric Disorder Among Prisoners in New South Wales. Psychiatry, Psychology and Law, 2006, 13, 160-165. 0.9 4 210 Functional coupling of Pi4-receptor-Gizi-tethered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796. 0.6 4 211 The human toxicity of marijuana. Medical Journal of Australia, 1994, 161, 338-338. 0.8 4 212 Do medullary serotonergic neurons tonically modulate nociceptive transmission?. Pain Forum, 1998, 7, 1.1 3 213 Developmental changes in the 1s-adrenergic responses of rat periaqueductal grey neurons. NeuroReport, 2003, 14, 1637-1639. 0.6 3	203		2.8	6
205 1994, 13, 209-216. 11 5 206 Measuring heroin use in methadone maintenance programmes. Drug and Alcohol Review, 1995, 14, 27-34. 1.1 5 207 Spider Venom Peptide Pn3a Inhibition of Primary Afferent High Voltage-Activated Calcium Channels. 1.6 5 208 Method of sacrifice influences leucine enkephalin binding to mouse brain. Pharmacology Biochemistry and Behavior, 1981, 15, 849-851. 1.3 4 209 The Relationship Between Amphetamine Use, Crime and Psychiatric Disorder Among Prisoners in New South Wales. Psychiatry, Psychology and Law, 2006, 13, 160-165. 0.9 4 210 Functional coupling of μ-receptor-Gî±i-tethered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796. 0.6 4 211 The human toxicity of marijuana. Medical Journal of Australia, 1994, 161, 338-338. 0.8 4 212 Do medullary serotonergic neurons tonically modulate nociceptive transmission?. Pain Forum, 1998, 7, 1155-158. 1.1 3 213 Developmental changes in the 1±-adrenergic responses of rat periaqueductal grey neurons. NeuroReport, 2003, 14, 1637-1639. 0.6 3	204		1.2	5
207 Spider Venom Peptide Pn3a Inhibition of Primary Afferent High Voltage-Activated Calcium Channels. 1.6 5 208 Method of sacrifice influences leucine enkephalin binding to mouse brain. Pharmacology Biochemistry and Behavior, 1981, 15, 849-851. 1.3 4 209 The Relationship Between Amphetamine Use, Crime and Psychiatric Disorder Among Prisoners in New South Wales. Psychiatry, Psychology and Law, 2006, 13, 160-165. 0.9 4 210 Functional coupling of μ-receptor-Gl±i-tethered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796. 0.6 4 211 The human toxicity of marijuana. Medical Journal of Australia, 1994, 161, 338-338. 0.8 4 212 Do medullary serotonergic neurons tonically modulate nociceptive transmission?. Pain Forum, 1998, 7, 155-158. 1.1 3 213 Developmental changes in the I±-adrenergic responses of rat periaqueductal grey neurons. NeuroReport, 2003, 14, 1637-1639. 0.6 3	205		1.1	5
209 Frontiers in Pharmacology, 2020, 11, 633679. 160 5 208 Method of sacrifice influences leucine enkephalin binding to mouse brain. Pharmacology Biochemistry and Behavior, 1981, 15, 849-851. 1.3 4 209 The Relationship Between Amphetamine Use, Crime and Psychiatric Disorder Among Prisoners in New South Wales. Psychiatry, Psychology and Law, 2006, 13, 160-165. 0.9 4 210 Functional coupling of Îl/4-receptor-Gαi-tethered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796. 0.6 4 211 The human toxicity of marijuana. Medical Journal of Australia, 1994, 161, 338-338. 0.8 4 212 Do medullary serotonergic neurons tonically modulate nociceptive transmission?. Pain Forum, 1998, 7, 155-158. 1.1 3 213 Developmental changes in the α-adrenergic responses of rat periaqueductal grey neurons. NeuroReport, 2003, 14, 1637-1639. 0.6 3	206	Measuring heroin use in methadone maintenance programmes. Drug and Alcohol Review, 1995, 14, 27-34.	1.1	5
208 Biochemistry and Behavior, 1981, 15, 849-851. 1.3 4 209 The Relationship Between Amphetamine Use, Crime and Psychiatric Disorder Among Prisoners in New South Wales. Psychiatry, Psychology and Law, 2006, 13, 160-165. 0.9 4 210 Functional coupling of μ-receptor-Gαi-tethered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796. 0.6 4 211 The human toxicity of marijuana. Medical Journal of Australia, 1994, 161, 338-338. 0.8 4 212 Do medullary serotonergic neurons tonically modulate nociceptive transmission?. Pain Forum, 1998, 7, 1.1 3 213 Developmental changes in the α-adrenergic responses of rat periaqueductal grey neurons. NeuroReport, 2003, 14, 1637-1639. 0.6 3 213 Influence of Trishomocubanes on Sigma Recentor Binding of N-(1-Benzylpineridin-) Ti ELOOO 0.0 rgBT /Overlock 10 Tf 50 142 Td (4-vl)-4	207		1.6	5
209 South Wales. Psychiatry, Psychology and Law, 2006, 13, 160-165. 0.9 4 210 Functional coupling of μ-receptor-Cαi-tethered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796. 0.6 4 211 The human toxicity of marijuana. Medical Journal of Australia, 1994, 161, 338-338. 0.8 4 212 Do medullary serotonergic neurons tonically modulate nociceptive transmission?. Pain Forum, 1998, 7, 1.1 3 213 Developmental changes in the α-adrenergic responses of rat periaqueductal grey neurons. NeuroReport, 2003, 14, 1637-1639. 0.6 3 213 Influence of Irishomocubanes on Sigma Recentor Binding of N-(1-Benzylpiperidin-) Ti ETOQ0 0.0 rgBT /Overlock 10.1f 50.142 Td (4-vl)-4 3	208	Method of sacrifice influences leucine enkephalin binding to mouse brain. Pharmacology Biochemistry and Behavior, 1981, 15, 849-851.	1.3	4
211 The human toxicity of marijuana. Medical Journal of Australia, 1994, 161, 338-338. 0.8 4 212 Do medullary serotonergic neurons tonically modulate nociceptive transmission?. Pain Forum, 1998, 7, 1.1 3 213 Developmental changes in the î±-adrenergic responses of rat periaqueductal grey neurons. NeuroReport, 2003, 14, 1637-1639. 0.6 3 Influence of Trishomocubanes on Sigma Recentor Binding of N-(1-Benzylpiperidin-) Ti ETOp0.0.0 rgBT /Overlock 10 Tf 50 142 Td (4-vl)-4 3	209	The Relationship Between Amphetamine Use, Crime and Psychiatric Disorder Among Prisoners in New South Wales. Psychiatry, Psychology and Law, 2006, 13, 160-165.	0.9	4
212 Do medullary serotonergic neurons tonically modulate nociceptive transmission?. Pain Forum, 1998, 7, 1.1 3 213 Developmental changes in the α-adrenergic responses of rat periaqueductal grey neurons. 0.6 3 213 Influence of Trishomocubanes on Sigma Recentor Binding of N-(1-Benzylpiperidin-) Ti ETOq0 0.0 rgBT /Overlock 10 Tf 50 142 Td (4-yl)-4	210	Functional coupling of μ-receptor-Gαi-tethered proteins in AtT20 cells. NeuroReport, 2008, 19, 1793-1796.	0.6	4
212 155-158. I.I 3 213 Developmental changes in the î±-adrenergic responses of rat periaqueductal grey neurons. 0.6 3 213 Influence of Trishomocubanes on Sigma Recentor Binding of N-(1-Benzylpiperidin-) Ti ETOq0.0.0 rgBT /Overlock 10 Tf 50 142 Td (4-yl)-4	211	The human toxicity of marijuana. Medical Journal of Australia, 1994, 161, 338-338.	0.8	4
²¹³ NeuroReport, 2003, 14, 1637-1639. Influence of Trishomocubanes on Sigma Recentor Binding of N-(1-Benzylpiperidin-) Ti FTOq0.0.0 rgBT /Overlock 10.Tf 50.142 Td (4-yl)-4	212		1.1	3
Influence of Trishomocubanes on Sigma Receptor Binding of N-(1-Benzylpiperidin-) Tj ETQq0 0 0 rgBT /Overlock 10 Jf 50 142 Td (4-yl)-4	213	Developmental changes in the α-adrenergic responses of rat periaqueductal grey neurons. NeuroReport, 2003, 14, 1637-1639.	0.6	3
	214	Influence of Trishomocubanes on Sigma Receptor Binding of N-(1-Benzylpiperidin-) Tj ETQq0 0 0 rgBT /Overlock 1	.0 Jf 50 14	42 ₃ Td (4-yl)-4

215	Chronic haloperidol and adrenergic receptor sensitivity in the rat. Journal of Neural Transmission, 1983, 57, 13-25.	1.4	2
216	Australian funnel-web spider toxin, versutoxin, enhances spontaneous synaptic activity in single brain neurons in vitro. Brain Research, 1993, 626, 136-142.	1.1	2

#	Article	IF	CITATIONS
217	Science signals a new understanding of marihuana. Drug and Alcohol Review, 1994, 13, 307-317.	1.1	2
218	X-Ray Crystallographic Structures of Biologically Active Trishomocubanes of the Types Pentacyclo[5.4.0.02,6.03,10.05,9]undecylamines and 4-Azahexacyclo[5.4.1.02,6.03,10.05,9.08,11]dodecane. Australian Journal of Chemistry, 2000, 53, 899.	0.5	2
219	Abventricular Division. , 2008, , 3-3.		1
220	Correction to "Analgesic ï‰-Conotoxins CVIE and CVIF Selectively and Voltage-Dependently Block Recombinant and Native N-Type Calcium Channels― TABLE 1. Molecular Pharmacology, 2011, 80, 356-356.	1.0	1
221	The Light Touch of Delta Opioid Receptors. Neuron, 2014, 81, 1220-1222.	3.8	1
222	The human toxicity of marijuana. Medical Journal of Australia, 1994, 161, 338-9.	0.8	1
223	Tetrahydro-9-aminoacridine has mixed actions on muscarinic currents and blocks opioid currents in rat locus ceruleus neurons. Journal of Pharmacology and Experimental Therapeutics, 1996, 276, 137-42.	1.3	1
224	Clycinergic Modulation of Pain in Behavioral Animal Models. Frontiers in Pharmacology, 2022, 13, .	1.6	1
225	Spider toxins: A new group of potassium channel modulators. Journal of Computer - Aided Molecular Design, 1999, 15/16, 61-69.	1.0	Ο
226	Tolerance and Dependence. , 2009, , 4073-4076.		0
227	Themed section. British Journal of Pharmacology, 2015, 172, 247-250.	2.7	Ο
228	Correction to: Electrophysiological Actions of N/OFQ. Handbook of Experimental Pharmacology, 2019, 254, 417-417.	0.9	0
229	Activation of accumbal and striatal dopamine autoreceptors by some ergoline derivatives. Research Communications in Chemical Pathology and Pharmacology, 1985, 48, 149-52.	0.2	Ο