
Anna-Maria Coclite

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/269225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	25th Anniversary Article: CVD Polymers: A New Paradigm for Surface Modifi cation and Device Fabrication. Advanced Materials, 2013, 25, 5392-5423.	21.0	211
2	CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Reports on Progress in Physics, 2012, 75, 016501.	20.1	152
3	Grafted Crystalline Polyâ€Perfluoroacrylate Structures for Superhydrophobic and Oleophobic Functional Coatings. Advanced Materials, 2012, 24, 4534-4539.	21.0	77
4	Controlling the Degree of Crystallinity and Preferred Crystallographic Orientation in Polyâ€Perfluorodecylacrylate Thin Films by Initiated Chemical Vapor Deposition. Advanced Functional Materials, 2012, 22, 2167-2176.	14.9	58
5	Drug release from thin films encapsulated by a temperature-responsive hydrogel. Soft Matter, 2019, 15, 1853-1859.	2.7	52
6	Singleâ€Chamber Deposition of Multilayer Barriers by Plasma Enhanced and Initiated Chemical Vapor Deposition of Organosilicones. Plasma Processes and Polymers, 2010, 7, 561-570.	3.0	50
7	Novel Light-Responsive Biocompatible Hydrogels Produced by Initiated Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2017, 9, 17408-17416.	8.0	45
8	Chemical Vapor Deposition for Solventâ€Free Polymerization at Surfaces. Macromolecular Chemistry and Physics, 2013, 214, 302-312.	2.2	40
9	Layered Nanostructures in Proton Conductive Polymers Obtained by Initiated Chemical Vapor Deposition. Macromolecules, 2015, 48, 6177-6185.	4.8	37
10	Novel hybrid fluoro-carboxylated copolymers deposited by initiated chemical vapor deposition as protonic membranes. Polymer, 2013, 54, 24-30.	3.8	35
11	Tuning of material properties of ZnO thin films grown by plasma-enhanced atomic layer deposition at room temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36,	2.1	35
12	Initiated PECVD of Organosilicon Coatings: A New Strategy to Enhance Monomer Structure Retention. Plasma Processes and Polymers, 2012, 9, 425-434.	3.0	33
13	Polymer Encapsulation of an Amorphous Pharmaceutical by initiated Chemical Vapor Deposition for Enhanced Stability. ACS Applied Materials & Interfaces, 2016, 8, 21177-21184.	8.0	33
14	Global and local planarization of surface roughness by chemical vapor deposition of organosilicon polymer for barrier applications. Journal of Applied Physics, 2012, 111, 073516.	2.5	32
15	Dynamic Studies on the Response to Humidity of Poly (2-hydroxyethyl methacrylate) Hydrogels Produced by Initiated Chemical Vapor Deposition. Macromolecular Chemistry and Physics, 2016, 217, 2372-2379.	2.2	32
16	Flexible Cross-Linked Organosilicon Thin Films by Initiated Chemical Vapor Deposition. Macromolecules, 2009, 42, 8138-8145.	4.8	30
17	Fast Optical Humidity Sensor Based on Hydrogel Thin Film Expansion for Harsh Environment. Sensors, 2019, 19, 999.	3.8	29
18	Vapor-phase-synthesized fluoroacrylate polymer thin films: thermal stability and structural properties. Beilstein Journal of Nanotechnology, 2017, 8, 933-942.	2.8	26

ANNA-MARIA COCLITE

#	Article	IF	CITATIONS
19	Strategies for Drug Encapsulation and Controlled Delivery Based on Vaporâ€Phase Deposited Thin Films. Advanced Engineering Materials, 2018, 20, 1700639.	3.5	25
20	Investigation of NiOx-hole transport layers in triple cation perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 1847-1855.	2.2	25
21	Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphene. ACS Applied Polymer Materials, 2021, 3, 1809-1818.	4.4	25
22	Applicability of Vapor-Deposited Thermoresponsive Hydrogel Thin Films in Ultrafast Humidity Sensors/Actuators. ACS Applied Polymer Materials, 2020, 2, 1160-1168.	4.4	23
23	On the relationship between the structure and the barrier performance of plasma deposited silicon dioxide-like films. Surface and Coatings Technology, 2010, 204, 4012-4017.	4.8	22
24	Different Response Kinetics to Temperature and Water Vapor of Acrylamide Polymers Obtained by Initiated Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2018, 10, 6636-6645.	8.0	22
25	Growth Regimes of Poly(perfluorodecyl acrylate) Thin Films by Initiated Chemical Vapor Deposition. Macromolecules, 2018, 51, 5694-5703.	4.8	22
26	Controlling Indomethacin Release through Vapor-Phase Deposited Hydrogel Films by Adjusting the Cross-linker Density. Scientific Reports, 2018, 8, 7134.	3.3	22
27	Super-Hydrophobic and Oloephobic Crystalline Coatings by Initiated Chemical Vapor Deposition. Physics Procedia, 2013, 46, 56-61.	1.2	21
28	Piezoelectric Properties of Zinc Oxide Thin Films Grown by Plasmaâ€Enhanced Atomic Layer Deposition. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000319.	1.8	20
29	Deep tissue localization and sensing using optical microcavity probes. Nature Communications, 2022, 13, 1269.	12.8	18
30	Smart surfaces by initiated chemical vapor deposition. Surface Innovations, 2013, 1, 6-14.	2.3	17
31	Temporary Tattoo pH Sensor with pHâ€Responsive Hydrogel via Initiated Chemical Vapor Deposition. Advanced Materials Technologies, 2022, 7, 2100717.	5.8	16
32	Surface-Induced Phase of Tyrian Purple (6,6′-Dibromoindigo): Thin Film Formation and Stability. Crystal Growth and Design, 2016, 16, 3647-3655.	3.0	15
33	Opto-chemical control through thermal treatment of plasma enhanced atomic layer deposited ZnO: An in situ study. Applied Surface Science, 2019, 483, 10-18.	6.1	15
34	Solventâ€Free Powder Synthesis and Thin Film Chemical Vapor Deposition of a Zinc Bipyridylâ€Triazolate Framework. European Journal of Inorganic Chemistry, 2020, 2020, 71-74.	2.0	15
35	Interlink between Tunable Material Properties and Thermoresponsiveness of Cross-Linked Poly(<i>N</i> -vinylcaprolactam) Thin Films Deposited by Initiated Chemical Vapor Deposition. Macromolecules, 2019, 52, 6817-6824.	4.8	14
36	Manipulating drug release from tridimensional porous substrates coated by initiated chemical vapor deposition. Journal of Applied Polymer Science, 2019, 136, 47858.	2.6	14

#	Article	IF	CITATIONS
37	ZnO Thin Films Grown by Plasmaâ€Enhanced Atomic Layer Deposition: Material Properties Within and Outside the "Atomic Layer Deposition Window― Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900256.	1.8	14
38	Fabrication, characterization and cytocompatibility assessment of gelatin nanofibers coated with a polymer thin film by initiated chemical vapor deposition. Materials Science and Engineering C, 2020, 110, 110623.	7.3	14
39	Oxidative Chemical Vapor Deposition of Conducting Polymer Films on Nanostructured Surfaces for Piezoresistive Sensor Applications. Advanced Electronic Materials, 2021, 7, 2000871.	5.1	13
40	Plasma Deposited Organosilicon Multistacks for Highâ€Performance Lowâ€Carbon Steel Protection. Plasma Processes and Polymers, 2010, 7, 802-812.	3.0	12
41	Chemical and Morphological Characterization of Lowâ€ <i>k</i> Dielectric Films Deposited From Hexamethyldisiloxane and Ethylene RF Glow Discharges. Plasma Processes and Polymers, 2010, 7, 1022-1029.	3.0	12
42	Wrinkle formation in a polymeric drug coating deposited via initiated chemical vapor deposition. Soft Matter, 2016, 12, 9501-9508.	2.7	12
43	Thickness-Dependent Swelling Behavior of Vapor-Deposited Smart Polymer Thin Films. Macromolecules, 2018, 51, 9692-9699.	4.8	12
44	On the transformation of "zincone―like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition. Beilstein Journal of Nanotechnology, 2019, 10, 746-759.	2.8	10
45	Initiated Chemical Vapor Deposition of Crosslinked Organic Coatings for Controlling Gentamicin Delivery. Pharmaceutics, 2020, 12, 213.	4.5	10
46	Metal Sulfide Thin Films with Tunable Nanoporosity for Photocatalytic Applications. ACS Applied Nano Materials, 2022, 5, 1508-1520.	5.0	10
47	Smart Coreâ€Shell Nanostructures for Force, Humidity, and Temperature Multiâ€Stimuli Responsiveness. Advanced Materials Technologies, 2022, 7, .	5.8	10
48	Mechanically robust silica-like coatings deposited by microwave plasmas for barrier applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 061502.	2.1	9
49	Simple method for the quantitative analysis of thin copolymer films on substrates by infrared spectroscopy using direct calibration. Analytical Methods, 2017, 9, 5266-5273.	2.7	9
50	Wrinkling of an Enteric Coating Induced by Vapor-Deposited Stimuli-Responsive Hydrogel Thin Films. Journal of Physical Chemistry C, 2019, 123, 24165-24171.	3.1	9
51	Mesoporous ZnO thin films obtained from molecular layer deposited "zincones― Dalton Transactions, 2019, 48, 14178-14188.	3.3	9
52	Screen-Printed Ferroelectric P(VDF-TrFE)- <i>co</i> PbTiO ₃ and P(VDF-TrFE)- <i>co</i> -NaBiTi ₂ O ₆ Nanocomposites for Selective Temperature and Pressure Sensing. ACS Applied Materials & Interfaces, 2020, 12, 38614-38625.	8.0	9
53	Thermal studies on proton conductive copolymer thin films based on perfluoroacrylates synthesized by initiated Chemical Vapor Deposition. Thin Solid Films, 2017, 635, 3-8.	1.8	8
54	Vapor phase infiltration of zinc oxide into thin films of <i>cis</i> -polyisoprene rubber. Materials Advances, 2020, 1, 1695-1704.	5.4	8

ANNA-MARIA COCLITE

#	Article	IF	CITATIONS
55	Influence of Precursor Density and Conversion Time on the Orientation of Vapor-Deposited ZIF-8. Crystals, 2022, 12, 217.	2.2	8
56	A Chemical Study of Plasmaâ€Deposited Organosilicon Thin Films as Lowâ€ <i>k</i> Dielectrics. Plasma Processes and Polymers, 2009, 6, 512-520.	3.0	7
57	Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2016, 119, .	2.5	7
58	Initial Growth and Crystallization Onset of Plasma Enhanced-Atomic Layer Deposited ZnO. Crystals, 2020, 10, 291.	2.2	7
59	Conformal Coating of Powder by Initiated Chemical Vapor Deposition on Vibrating Substrate. Pharmaceutics, 2020, 12, 904.	4.5	6
60	Deposition of Ion-Conductive Membranes from Ionic Liquids via Initiated Chemical Vapor Deposition. Macromolecules, 2020, 53, 7962-7969.	4.8	6
61	Humidity Responsive Reflection Grating Made by Ultrafast Nanoimprinting of a Hydrogel Thin Film. Macromolecular Rapid Communications, 2022, 43, .	3.9	5
62	Crystallization of Tyrian purple (6,6′-dibromoindigo) thin films: The impact of substrate surface modifications. Journal of Crystal Growth, 2016, 447, 73-79.	1.5	4
63	Thickness-Dependent Swelling Behavior of Vapor-Deposited Hydrogel Thin Films. Proceedings (mdpi), 2018, 2, .	0.2	4
64	Universal software for the real-time control of sequential processing techniques. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 063201.	2.1	3
65	Study on Porosity in Zinc Oxide Ultrathin Films from Three-Step MLD Zn-Hybrid Polymers. Materials, 2021, 14, 1418.	2.9	3
66	Dry Polymerization of Functional Thin Films and Multilayers by Chemical Vapor Deposition. , 2015, , 167-186.		2
67	Tuning Material Properties of ZnO Thin Films for Advanced Sensor Applications. Proceedings (mdpi), 2018, 2, .	0.2	1
68	Modeling of Nanostructured Thin Films for Optical Readout. , 2021, , .		1
69	Fast Humidity Sensors for Harsh Environment. Proceedings (mdpi), 2018, 2, .	0.2	0
70	Editorial: One- and Two-Dimensional Nanostructures for Drug Delivery Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 782615.	4.1	0
71	<i>A Special Section on</i> Nanostructured Functional Polymers. Nanoscience and Nanotechnology Letters, 2015, 7, 20-20.	0.4	Ο