William M Bertucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2691642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aerodynamic drag in cycling: methods of assessment. Sports Biomechanics, 2011, 10, 197-218.	1.6	91
2	Muscular activity during uphill cycling: Effect of slope, posture, hand grip position and constrained bicycle lateral sways. Journal of Electromyography and Kinesiology, 2008, 18, 116-127.	1.7	79
3	Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. Journal of Biomechanics, 2005, 38, 1003-1010.	2.1	57
4	Laboratory versus Outdoor Cycling Conditions: Differences in Pedaling Biomechanics. Journal of Applied Biomechanics, 2007, 23, 87-92.	0.8	35
5	Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises. Sports Biomechanics, 2016, 15, 409-428.	1.6	34
6	Validity, Sensitivity, Reproducibility, and Robustness of the PowerTap, Stages, and Garmin Vector Power Meters in Comparison With the SRM Device. International Journal of Sports Physiology and Performance, 2017, 12, 1023-1030.	2.3	31
7	Hand–arm vibration in cycling. JVC/Journal of Vibration and Control, 2013, 19, 2551-2560.	2.6	27
8	The categorization of amateur cyclists as research participants: findings from an observational study. Journal of Sports Sciences, 2018, 36, 2018-2024.	2.0	26
9	Interactive-Virtual Reality (IVR) Exercise: An Examination of In-Task and Pre-to-Post Exercise Affective Changes. Journal of Applied Sport Psychology, 2011, 23, 65-75.	2.3	25
10	Validity and Reproducibility of the Ergomo®Pro Power Meter Compared With the SRM and Powertap Power Meters. International Journal of Sports Physiology and Performance, 2007, 2, 270-281.	2.3	24
11	A retrospective international study on factors associated with injury, discomfort and pain perception among cyclists. PLoS ONE, 2019, 14, e0211197.	2.5	18
12	Gross Efficiency and Cycling Economy Are Higher in the Field as Compared with on an Axiom Stationary Ergometer. Journal of Applied Biomechanics, 2012, 28, 636-644.	0.8	17
13	Evaluation of aerodynamic and rolling resistances in mountain-bike field conditions. Journal of Sports Sciences, 2013, 31, 1606-1613.	2.0	17
14	Prediction of crank torque and pedal angle profiles during pedaling movements by biomechanical optimization. Structural and Multidisciplinary Optimization, 2015, 51, 251-266.	3.5	16
15	The association of bike fitting with injury, comfort, and pain during cycling: An international retrospective survey. European Journal of Sport Science, 2019, 19, 842-849.	2.7	15
16	Telic dominance influences affective response to a heavy-intensity 10-min treadmill running session. Journal of Sports Sciences, 2009, 27, 1059-1067.	2.0	14
17	Optimisation of starting conditions in track cycling. Sport Sciences for Health, 2014, 10, 189-198.	1.3	13
18	Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling. Journal of Sports Sciences, 2018, 36, 1465-1475.	2.0	13

WILLIAM M BERTUCCI

#	Article	IF	CITATIONS
19	Laboratory Testing and Field Performance in BMX Riders. Journal of Sports Science and Medicine, 2011, 10, 417-9.	1.6	13
20	Comparison of two static methods of saddle height adjustment for cyclists of different morphologies. Sports Biomechanics, 2021, 20, 391-406.	1.6	10
21	Original characteristics of a new cycle ergometer. Sports Engineering, 2011, 13, 171-179.	1.1	8
22	Physical risk associated with vibration at cycling. Mechanics and Industry, 2014, 15, 535-540.	1.3	8
23	Caveats and Recommendations to Assess the Validity and Reliability of Cycling Power Meters: A Systematic Scoping Review. Sensors, 2022, 22, 386.	3.8	7
24	Relationships between facial temperature changes, endâ€exercise affect and duringâ€exercise changes in affect: A preliminary study. European Journal of Sport Science, 2015, 15, 161-166.	2.7	6
25	Physiological and dynamic response to vibration in cycling: A feasibility study. Mechanics and Industry, 2015, 16, 503.	1.3	5
26	Model of the risk assessment of hand-arm system vibrations in cycling: Case of cobblestone road. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2015, 229, 231-238.	0.7	5
27	Acute Effects of Aerobic Exercise on Feelings of Energy in Relation to Age and Sex. Journal of Aging and Physical Activity, 2016, 24, 72-78.	1.0	5
28	Effect of cycling shoe cleat position on biomechanical and physiological responses during cycling and subsequent running parts of a simulated Sprint triathlon: a pilot study. Journal of Science and Cycling, 2020, 9, 57-70.	0.2	4
29	Effect of asymmetric crank arm lengths on performance-related variables in cyclists with an anatomical lower limb length discrepancy. Sports Engineering, 2020, 23, 1.	1.1	2
30	Do Changes in Tympanic Temperature Predict Changes in Affective Valence During High-Intensity Exercise?. Research Quarterly for Exercise and Sport, 2015, 86, 252-259.	1.4	1
31	Physiological, biomechanical, and subjective effects of medio-lateral distance between the feet during pedalling for cyclists of different morphologies. Journal of Sports Sciences, 2021, 39, 768-776.	2.0	1
32	Acute effects of small changes in antero-posterior shoe-cleat position on physiological and biomechanical variables in road cycling. Sports Biomechanics, 2023, 22, 510-521.	1.6	1
33	Intra-cycle analysis of muscle vibration during cycling. Sports Biomechanics, 2023, 22, 554-566.	1.6	1