Steve D M Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2690331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	27.8	1,001
2	A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biology, 2013, 14, R82.	9.6	403
3	Genome-Wide Association Study Using Extreme Truncate Selection Identifies Novel Genes Affecting Bone Mineral Density and Fracture Risk. PLoS Genetics, 2011, 7, e1001372.	3.5	233
4	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	21.4	216
5	Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications, 2017, 8, 15475.	12.8	200
6	A gene-driven ENU-based approach to generating an allelic series in any gene. Mammalian Genome, 2004, 15, 585-591.	2.2	148
7	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	21.4	137
8	Novel ENU-induced eye mutations in the mouse: models for human eye disease. Human Molecular Genetics, 2002, 11, 755-767.	2.9	126
9	Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing. Nature Genetics, 2016, 48, 912-918.	21.4	124
10	CIB2 interacts with TMC1 and TMC2 and is essential for mechanotransduction in auditory hair cells. Nature Communications, 2017, 8, 43.	12.8	121
11	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	12.8	116
12	Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Medicine, 2016, 8, 16.	8.2	113
13	A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. Human Molecular Genetics, 2006, 15, 3273-3279.	2.9	98
14	A hearing and vestibular phenotyping pipeline to identify mouse mutants with hearing impairment. Nature Protocols, 2010, 5, 177-190.	12.0	93
15	Helios is a key transcriptional regulator of outer hair cell maturation. Nature, 2018, 563, 696-700.	27.8	90
16	Mutation at the Evi1 Locus in Junbo Mice Causes Susceptibility to Otitis Media. PLoS Genetics, 2006, 2, e149.	3.5	88
17	The Deaf Mouse Mutant Jeff (Jf) is a Single Gene Model of Otitis Media. JARO - Journal of the Association for Research in Otolaryngology, 2003, 4, 130-138.	1.8	79
18	Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nature Communications, 2016, 7, 12444.	12.8	79

STEVE D M BROWN

#	Article	IF	CITATIONS
19	High-throughput mouse phenomics for characterizing mammalian gene function. Nature Reviews Genetics, 2018, 19, 357-370.	16.3	78
20	Applying the ARRIVE Guidelines to an In Vivo Database. PLoS Biology, 2015, 13, e1002151.	5.6	75
21	Association of the FBXO11 Gene With Chronic Otitis Media With Effusion and Recurrent Otitis Media. JAMA Otolaryngology, 2006, 132, 729.	1.2	65
22	Mouse Models of NMNAT1-Leber Congenital Amaurosis (LCA9) Recapitulate Key Features of the Human Disease. American Journal of Pathology, 2016, 186, 1925-1938.	3.8	61
23	The Functional Annotation of Mammalian Genomes: The Challenge of Phenotyping. Annual Review of Genetics, 2009, 43, 305-333.	7.6	60
24	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	21.4	60
25	Unraveling the genetics of otitis media: from mouse to human and back again. Mammalian Genome, 2011, 22, 66-82.	2.2	58
26	HIF–VEGF Pathways Are Critical for Chronic Otitis Media in Junbo and Jeff Mouse Mutants. PLoS Genetics, 2011, 7, e1002336.	3.5	54
27	Otitis media in the Tgif knockout mouse implicates TGFβ signalling in chronic middle ear inflammatory disease. Human Molecular Genetics, 2013, 22, 2553-2565.	2.9	50
28	Gelsolin Plays a Role in the Actin Polymerization Complex of Hair Cell Stereocilia. PLoS ONE, 2010, 5, e11627.	2.5	38
29	A mutation in Nischarin causes otitis media via LIMK1 and NF-κB pathways. PLoS Genetics, 2017, 13, e1006969.	3.5	36
30	A Wars2 Mutant Mouse Model Displays OXPHOS Deficiencies and Activation of Tissue-Specific Stress Response Pathways. Cell Reports, 2018, 25, 3315-3328.e6.	6.4	35
31	EVI1 Acts as an Inducible Negative-Feedback Regulator of NF-κB by Inhibiting p65 Acetylation. Journal of Immunology, 2012, 188, 6371-6380.	0.8	33
32	Absence of Neuroplastin-65 Affects Synaptogenesis in Mouse Inner Hair Cells and Causes Profound Hearing Loss. Journal of Neuroscience, 2016, 36, 222-234.	3.6	30
33	Ageâ€related changes in the biophysical and morphological characteristics of mouse cochlear outer hair cells. Journal of Physiology, 2020, 598, 3891-3910.	2.9	29
34	Loss of <i>Baiap2l2</i> destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness. Journal of Physiology, 2021, 599, 1173-1198.	2.9	28
35	Advances in mouse genetics for the study of human disease. Human Molecular Genetics, 2021, 30, R274-R284.	2.9	26
36	Biophysical and morphological changes in inner hair cells and their efferent innervation in the ageing mouse cochlea. Journal of Physiology, 2021, 599, 269-287.	2.9	25

STEVE D M BROWN

#	Article	IF	CITATIONS
37	Pathophysiological changes in inner hair cell ribbon synapses in the ageing mammalian cochlea. Journal of Physiology, 2020, 598, 4339-4355.	2.9	23
38	Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. , 2022, 1, 157-173.		22
39	Genetic landscape of auditory dysfunction. Human Molecular Genetics, 2018, 27, R130-R135.	2.9	20
40	Interactions between the otitis media gene, <i>Fbxo11</i> , and <i>p53</i> in the mouse embryonic lung. DMM Disease Models and Mechanisms, 2015, 8, 1531-42.	2.4	19
41	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	3.5	19
42	A genetic modifier suggests that endurance exercise exacerbates Huntington's disease. Human Molecular Genetics, 2018, 27, 1723-1731.	2.9	17
43	N-ethyl-N-Nitrosourea (ENU) Induced Mutations within the Klotho Gene Lead to Ectopic Calcification and Reduced Lifespan in Mouse Models. PLoS ONE, 2015, 10, e0122650.	2.5	16
44	The Actin-Binding Proteins Eps8 and Gelsolin Have Complementary Roles in Regulating the Growth and Stability of Mechanosensory Hair Bundles of Mammalian Cochlear Outer Hair Cells. PLoS ONE, 2014, 9, e87331.	2.5	15
45	Cellular content plays a crucial role in Nonâ€ŧypeable <i>Haemophilus influenzae</i> infection of preinflamed <i>Junbo</i> mouse middle ear. Cellular Microbiology, 2019, 21, e12960.	2.1	13
46	Transcript Analysis Reveals a Hypoxic Inflammatory Environment in Human Chronic Otitis Media With Effusion. Frontiers in Genetics, 2019, 10, 1327.	2.3	12
47	Modification of an aggressive model of Alport Syndrome reveals early differences in disease pathogenesis due to genetic background. Scientific Reports, 2019, 9, 20398.	3.3	11
48	Mice with an N-Ethyl-N-Nitrosourea (ENU) Induced Tyr209Asn Mutation in Natriuretic Peptide Receptor 3 (NPR3) Provide a Model for Kyphosis Associated with Activation of the MAPK Signaling Pathway. PLoS ONE, 2016, 11, e0167916.	2.5	11
49	High-throughput discovery of genetic determinants of circadian misalignment. PLoS Genetics, 2020, 16, e1008577.	3.5	10
50	Cellular Immune Response against Nontypeable <i>Haemophilus influenzae</i> Infecting the Preinflamed Middle Ear of the <i>Junbo</i> Mouse. Infection and Immunity, 2019, 87, .	2.2	9
51	A Requirement for Zic2 in the Regulation of Nodal Expression Underlies the Establishment of Left-Sided Identity. Scientific Reports, 2018, 8, 10439.	3.3	6
52	Mutation in Fbxo11 Leads to Altered Immune Cell Content in Jeff Mouse Model of Otitis Media. Frontiers in Genetics, 2020, 11, 50.	2.3	6
53	Identifying genetic determinants of inflammatory pain in mice using a large-scale gene-targeted screen. Pain, 2022, 163, 1139-1157.	4.2	4
54	Neuroplastin genetically interacts with Cadherin 23 and the encoded isoform Np55 is sufficient for cochlear hair cell function and hearing. PLoS Genetics, 2022, 18, e1009937.	3.5	4

STEVE D M BROWN

#	Article	IF	CITATIONS
55	A holistic view of mouse enhancer architectures reveals analogous pleiotropic effects and correlation with human disease. BMC Genomics, 2020, 21, 754.	2.8	3
56	INFRAFRONTIER quality principles in systemic phenotyping. Mammalian Genome, 2021, , 1.	2.2	3
57	Comparative visualization of genotype-phenotype relationships. Nature Methods, 2015, 12, 698-699.	19.0	2
58	The Jeff Mouse Mutant Model for Chronic Otitis Media Manifests Gain-of-Function as Well as Loss-of-Function Effects. Frontiers in Genetics, 2020, 11, 498.	2.3	2
59	Introduction. Mammalian Genome, 2011, 22, 361-361.	2.2	1
60	Introduction to Mammalian Genome Special Issue: Mammalian Genetic Resources. Mammalian Genome, 2022, 33, 1-3.	2.2	0
61	High-throughput discovery of genetic determinants of circadian misalignment. , 2020, 16, e1008577.		0
62	High-throughput discovery of genetic determinants of circadian misalignment. , 2020, 16, e1008577.		0
63	High-throughput discovery of genetic determinants of circadian misalignment. , 2020, 16, e1008577.		0
64	High-throughput discovery of genetic determinants of circadian misalignment. , 2020, 16, e1008577.		0