Dario C Altieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2690271/publications.pdf

Version: 2024-02-01

		17440	25787
110	19,157	63	108
papers	citations	h-index	g-index
110	110	110	15892
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Medicine, 1997, 3, 917-921.	30.7	2,939
2	Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998, 396, 580-584.	27.8	1,741
3	Validating survivin as a cancer therapeutic target. Nature Reviews Cancer, 2003, 3, 46-54.	28.4	1,158
4	Survivin, cancer networks and pathway-directed drug discovery. Nature Reviews Cancer, 2008, 8, 61-70.	28.4	903
5	Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene, 2003, 22, 8581-8589.	5.9	832
6	Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nature Cell Biology, 1999, 1, 461-466.	10.3	566
7	Regulation of Tumor Cell Mitochondrial Homeostasis by an Organelle-Specific Hsp90 Chaperone Network. Cell, 2007, 131, 257-270.	28.9	400
8	An IAP-IAP Complex Inhibits Apoptosis. Journal of Biological Chemistry, 2004, 279, 34087-34090.	3.4	332
9	Survivin and IAP proteins in cell-death mechanisms. Biochemical Journal, 2010, 430, 199-205.	3.7	331
10	Control of Apoptosis during Angiogenesis by Survivin Expression in Endothelial Cells. American Journal of Pathology, 2000, 156, 393-398.	3.8	330
11	Expression and Targeting of the Apoptosis Inhibitor, Survivin, in Human Melanoma. Journal of Investigative Dermatology, 1999, 113, 1076-1081.	0.7	316
12	Regulation of survivin function by Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13791-13796.	7.1	311
13	Rational design of shepherdin, a novel anticancer agent. Cancer Cell, 2005, 7, 457-468.	16.8	311
14	Survivin and molecular pathogenesis of colorectal cancer. Lancet, The, 2003, 362, 205-209.	13.7	308
15	A p34cdc2 survival checkpoint in cancer. Cancer Cell, 2002, 2, 43-54.	16.8	304
16	Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. Journal of Clinical Investigation, 2004, 114, 1117-1127.	8.2	284
17	Transcriptional analysis of human <i>survivin</i> gene expression. Biochemical Journal, 1999, 344, 305-311.	3.7	264
18	IAP Regulation of Metastasis. Cancer Cell, 2010, 17, 53-64.	16.8	258

#	Article	IF	CITATIONS
19	Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function. Journal of Cell Science, 2002, 115, 575-585.	2.0	255
20	The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Current Opinion in Cell Biology, 2006, 18, 609-615.	5.4	254
21	Survivin at a glance. Journal of Cell Science, 2019, 132, .	2.0	250
22	Hsp60 Regulation of Tumor Cell Apoptosis. Journal of Biological Chemistry, 2008, 283, 5188-5194.	3.4	240
23	Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. Journal of Clinical Investigation, 2016, 126, 1834-1856.	8.2	219
24	Transcriptional analysis of human survivin gene expression. Biochemical Journal, 1999, 344, 305.	3.7	202
25	Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. Journal of Clinical Investigation, 2009, 119, 454-464.	8.2	198
26	Regulation of microtubule stability and mitotic progression by survivin. Cancer Research, 2002, 62, 2462-7.	0.9	190
27	Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. Journal of Clinical Investigation, 2004, 114, 1117-1127.	8.2	186
28	PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8638-8643.	7.1	174
29	Metabolic stress regulates cytoskeletal dynamics and metastasis of cancer cells. Journal of Clinical Investigation, 2013, 123, 2907-2920.	8.2	165
30	Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming. Cancer Cell, 2016, 30, 257-272.	16.8	158
31	TRAP-1, the mitochondrial Hsp90. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 767-773.	4.1	156
32	Targeting survivin in cancer. Cancer Letters, 2013, 332, 225-228.	7.2	156
33	Heat Shock Protein 60 Regulation of the Mitochondrial Permeability Transition Pore in Tumor Cells. Cancer Research, 2010, 70, 8988-8993.	0.9	153
34	Compartmentalized Phosphorylation of IAP by Protein Kinase A Regulates Cytoprotection. Molecular Cell, 2007, 27, 17-28.	9.7	138
35	Survivin Modulates Microtubule Dynamics and Nucleation throughout the Cell Cycle. Molecular Biology of the Cell, 2006, 17, 1483-1493.	2.1	135
36	Survival responses of human embryonic stem cells to DNA damage. Journal of Cellular Physiology, 2009, 220, 586-592.	4.1	135

#	Article	IF	Citations
37	Landscape of the mitochondrial Hsp90 metabolome in tumours. Nature Communications, 2013, 4, 2139.	12.8	135
38	Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. Journal of Clinical Investigation, 2011, 121, 1349-1360.	8.2	134
39	Survivin – The inconvenient IAP. Seminars in Cell and Developmental Biology, 2015, 39, 91-96.	5.0	130
40	Survivin and apoptosis control. Advances in Cancer Research, 2003, 88, 31-52.	5.0	128
41	Molecular circuits of apoptosis regulation and cell division control: The survivin paradigm. Journal of Cellular Biochemistry, 2004, 92, 656-663.	2.6	123
42	The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis. PLoS Biology, 2016, 14, e1002507.	5.6	118
43	Acute Ablation of Survivin Uncovers p53-dependent Mitotic Checkpoint Functions and Control of Mitochondrial Apoptosis. Journal of Biological Chemistry, 2004, 279, 2077-2084.	3.4	116
44	Cytoprotective Mitochondrial Chaperone TRAP-1 As a Novel Molecular Target in Localized and Metastatic Prostate Cancer. American Journal of Pathology, 2010, 176, 393-401.	3.8	113
45	A neuronal network of mitochondrial dynamics regulates metastasis. Nature Communications, 2016, 7, 13730.	12.8	112
46	Molecular Dependence of Estrogen Receptor–Negative Breast Cancer on a Notch-Survivin Signaling Axis. Cancer Research, 2008, 68, 5273-5281.	0.9	111
47	Interleukin-11 Up-Regulates Survivin Expression in Endothelial Cells through a Signal Transducer and Activator of Transcription-3 Pathway. Laboratory Investigation, 2001, 81, 327-334.	3.7	105
48	Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s. Cancer Cell, 2012, 22, 331-344.	16.8	103
49	Survivin as a global target of intrinsic tumor suppression networks. Cell Cycle, 2009, 8, 2708-2710.	2.6	101
50	Adaptive Mitochondrial Reprogramming and Resistance to PI3K Therapy. Journal of the National Cancer Institute, 2015, 107, .	6.3	91
51	Xa receptor EPRâ€1. FASEB Journal, 1995, 9, 860-865.	0.5	90
52	Tumor Cell Dependence on Ran-GTP–Directed Mitosis. Cancer Research, 2008, 68, 1826-1833.	0.9	88
53	Expression and prognostic significance of survivin in <i>de novo</i> acute myeloid leukaemia. British Journal of Haematology, 2000, 111, 196-203.	2.5	86
54	Preclinical Characterization of Mitochondria-Targeted Small Molecule Hsp90 Inhibitors, Gamitrinibs, in Advanced Prostate Cancer. Clinical Cancer Research, 2010, 16, 4779-4788.	7.0	85

#	Article	IF	Citations
55	Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy. Clinical Cancer Research, 2016, 22, 540-545.	7.0	85
56	Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Science Signaling, 2015, 8, ra80.	3.6	84
57	Dynamics-Based Discovery of Allosteric Inhibitors: Selection of New Ligands for the C-terminal Domain of Hsp90. Journal of Chemical Theory and Computation, 2010, 6, 2978-2989.	5.3	83
58	Activation of Mac-1 (CD11b/CD18)-bound factor X by released cathepsin G defines an alternative pathway of leucocyte initiation of coagulation. Biochemical Journal, 1996, 319, 873-879.	3.7	82
59	Survivin in apoptosis control and cell cycle regulation in cancer. Progress in Cell Cycle Research, 2003, 5, 447-52.	0.9	82
60	A Survivin Gene Signature Predicts Aggressive Tumor Behavior. Cancer Research, 2005, 65, 3531-3534.	0.9	78
61	Full-length dominant-negative survivin for cancer immunotherapy. Clinical Cancer Research, 2003, 9, 6523-33.	7.0	78
62	Mitochondrial HSP90 Accumulation Promotes Vascular Remodeling in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 90-103.	5.6	75
63	Regulation of Survivin Stability by the Aryl Hydrocarbon Receptor-interacting Protein. Journal of Biological Chemistry, 2006, 281, 24721-24727.	3.4	67
64	Deletion of the Mitochondrial Chaperone TRAP-1ÂUncovers Global Reprogramming of Metabolic Networks. Cell Reports, 2014, 8, 671-677.	6.4	64
65	Endogenous Tumor Suppression Mediated by <i>PTEN</i> Involves <i>Survivin</i> Gene Silencing. Cancer Research, 2009, 69, 4954-4958.	0.9	61
66	Mitochondrial dynamics and metastasis. Cellular and Molecular Life Sciences, 2019, 76, 827-835.	5.4	60
67	The mitophagy effector FUNDC1 controls mitochondrial reprogramming and cellular plasticity in cancer cells. Science Signaling, 2020, 13 , .	3.6	51
68	Mitochondria on the move: emerging paradigms of organelle trafficking in tumour plasticity and metastasis. British Journal of Cancer, 2017, 117, 301-305.	6.4	49
69	Mitosis-Independent Survivin Gene Expression In vivo and Regulation by p53. Cancer Research, 2006, 66, 3392-3395.	0.9	47
70	Syntaphilin Ubiquitination Regulates Mitochondrial Dynamics and Tumor Cell Movements. Cancer Research, 2018, 78, 4215-4228.	0.9	47
71	Proteases and protease receptors in modulation of leukocyte effector functions. Journal of Leukocyte Biology, 1995, 58, 120-127.	3.3	46
72	Aberrant Overexpression of the Cell Polarity Module Scribble in Human Cancer. American Journal of Pathology, 2011, 178, 2478-2483.	3.8	46

#	Article	IF	Citations
73	Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr Virus episomal latency. Oncotarget, 2017, 8, 7248-7264.	1.8	42
74	A Survivin-Ran Complex Regulates Spindle Formation in Tumor Cells. Molecular and Cellular Biology, 2008, 28, 5299-5311.	2.3	40
75	Hsp90 regulation of mitochondrial protein folding: from organelle integrity to cellular homeostasis. Cellular and Molecular Life Sciences, 2013, 70, 2463-2472.	5.4	37
76	Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. Journal of Clinical Investigation, 2017, 127, 3755-3769.	8.2	37
77	Developmental Control of Apoptosis by the Immunophilin Aryl Hydrocarbon Receptor-interacting Protein (AIP) Involves Mitochondrial Import of the Survivin Protein. Journal of Biological Chemistry, 2011, 286, 16758-16767.	3.4	35
78	MFF Regulation of Mitochondrial Cell Death Is a Therapeutic Target in Cancer. Cancer Research, 2019, 79, 6215-6226.	0.9	34
79	Mitochondrial fission factor is a novel Myc-dependent regulator of mitochondrial permeability in cancer. EBioMedicine, 2019, 48, 353-363.	6.1	33
80	Prostate cancer regulatory networks. Journal of Cellular Biochemistry, 2009, 107, 845-852.	2.6	32
81	Akt phosphorylation of mitochondrial Lonp1 protease enables oxidative metabolism and advanced tumor traits. Oncogene, 2019, 38, 6926-6939.	5.9	32
82	Inhibition of apoptosis by survivin improves transplantation of pancreatic islets for treatment of diabetes in mice. EMBO Reports, 2006, 7, 438-443.	4.5	31
83	Myc Regulation of a Mitochondrial Trafficking Network Mediates Tumor Cell Invasion and Metastasis. Molecular and Cellular Biology, 2019, 39, .	2.3	31
84	Transgenic Expression of the Mitochondrial Chaperone TNFR-associated Protein 1 (TRAP1) Accelerates Prostate Cancer Development. Journal of Biological Chemistry, 2016, 291, 25247-25254.	3.4	29
85	Human Diploid Fibroblasts are Refractory to Oncogene-Mediated Transformation. Cell Cycle, 2004, 3, 255-256.	2.6	27
86	Cancer cells exploit adaptive mitochondrial dynamics to increase tumor cell invasion. Cell Cycle, 2015, 14, 3242-3247.	2.6	26
87	IDH2 reprograms mitochondrial dynamics in cancer through a HIFâ€1αâ€regulated pseudohypoxic state. FASEB Journal, 2019, 33, 13398-13411.	0.5	26
88	Small Extracellular Vesicle Regulation of Mitochondrial Dynamics Reprograms a Hypoxic Tumor Microenvironment. Developmental Cell, 2020, 55, 163-177.e6.	7.0	26
89	Myc-mediated transcriptional regulation of the mitochondrial chaperone TRAP1 controls primary and metastatic tumor growth. Journal of Biological Chemistry, 2019, 294, 10407-10414.	3.4	25
90	Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression. PLoS ONE, 2015, 10, e0130060.	2.5	23

#	Article	IF	CITATIONS
91	A cancer ubiquitome landscape identifies metabolic reprogramming as target of Parkin tumor suppression. Science Advances, 2021, 7, .	10.3	19
92	Chk2 Phosphorylation of Survivin-ΔEx3 Contributes to a DNA Damage–Sensing Checkpoint in Cancer. Cancer Research, 2012, 72, 3251-3259.	0.9	18
93	Mitochondrial HSP90s and tumor cell metabolism. Autophagy, 2013, 9, 244-245.	9.1	17
94	A Mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy. Oncotarget, 2017, 8, 112184-112198.	1.8	17
95	Blocking Survivin to Kill Cancer Cells. , 2003, 223, 533-542.		16
96	Feasibility and safety of targeting mitochondria for cancer therapy – preclinical characterization of gamitrinib, a first-in-class, mitochondriaL-targeted small molecule Hsp90 inhibitor. Cancer Biology and Therapy, 2022, 23, 117-126.	3.4	13
97	microRNAâ€Mediated Survivin Control of Pluripotency. Journal of Cellular Physiology, 2015, 230, 63-70.	4.1	12
98	Ghost mitochondria drive metastasis through adaptive GCN2/Akt therapeutic vulnerability. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	12
99	Mitochondrial Compartmentalized Protein Folding and Tumor Cell Survival. Oncotarget, 2011, 2, 347-351.	1.8	11
100	T Cell Expansion. Immunity, 2005, 22, 534-535.	14.3	9
101	Essential Role of the Small GTPase Ran in Postnatal Pancreatic Islet Development. PLoS ONE, 2011, 6, e27879.	2.5	9
102	NFκB activation by hypoxic small extracellular vesicles drives oncogenic reprogramming in a breast cancer microenvironment. Oncogene, 2022, 41, 2520-2525.	5.9	9
103	AML Therapy: Wake Up the Guardian and Cut Loose the Executioners. Cancer Cell, 2017, 32, 719-720.	16.8	5
104	Syntaphilin Is a Novel Biphasic Biomarker of Aggressive Prostate Cancer and a Metastasis Predictor. American Journal of Pathology, 2019, 189, 1180-1189.	3.8	4
105	Protocol for assessing real-time changes in mitochondrial morphology, fission and fusion events in live cells using confocal microscopy. STAR Protocols, 2021, 2, 100767.	1.2	4
106	Disabling mitochondrial reprogramming in cancer. Pharmacological Research, 2015, 102, 42-45.	7.1	3
107	Interplay Between V-ATPase G1 and Small EV-miRNAs Modulates ERK1/2 Activation in GBM Stem Cells and Nonneoplastic Milieu. Molecular Cancer Research, 2020, 18, 1744-1754.	3.4	3
108	Antileukemic Activity of Shepherdin, a Novel Targeted Inhibitor of the Survivin-Hsp90 Complex Blood, 2005, 106, 242-242.	1.4	3

#	Article	IF	CITATIONS
109	Wall Street Doesn't Believe in This Target. Journal of Clinical Oncology, 2022, 40, 1838-1840.	1.6	1
110	Profiles and Legacies in Cancer Biology. Cancer Biology and Therapy, 2004, 3, 482-484.	3.4	0