Charles D Nichols

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2689186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From psychiatry to neurology: Psychedelics as prospective therapeutics for neurodegenerative disorders. Journal of Neurochemistry, 2022, 162, 89-108.	3.9	27
2	Lysergic acid diethylamide induces increased signalling entropy in rats' prefrontal cortex. Journal of Neurochemistry, 2022, 162, 9-23.	3.9	6
3	Pharmahuasca and DMT Rescue ROS Production and Differentially Expressed Genes Observed after Predator and Psychosocial Stress: Relevance to Human PTSD. ACS Chemical Neuroscience, 2022, 13, 257-274.	3.5	11
4	Herpes Simplex Virus-1 Induced Serotonin-Associated Metabolic Pathways Correlate With Severity of Virus- and Inflammation-Associated Ocular Disease. Frontiers in Microbiology, 2022, 13, 859866.	3.5	0
5	Psychedelics and Anti-inflammatory Activity in Animal Models. Current Topics in Behavioral Neurosciences, 2022, , 229-245.	1.7	6
6	A Standardized, Scalable Method to Quantify in Vitro Invasiveness. FASEB Journal, 2022, 36, .	0.5	0
7	Differential Regulation of Inflammatory Responses Following 5â€HT ₂ Receptor Activation in Pulmonary Tissues. FASEB Journal, 2022, 36, .	0.5	0
8	Structure–Activity Relationship Analysis of Psychedelics in a Rat Model of Asthma Reveals the Anti-Inflammatory Pharmacophore. ACS Pharmacology and Translational Science, 2021, 4, 488-502.	4.9	27
9	Psychedelic Drugs. , 2021, , 1-8.		0
10	Serotonin 5-HT2A receptor activity mediates adipocyte differentiation through control of adipogenic gene expression. Scientific Reports, 2021, 11, 19714.	3.3	3
11	Psychedelic Drugs. , 2021, , 1313-1320.		0
12	Safety, tolerability, pharmacokinetics, and pharmacodynamics of low dose lysergic acid diethylamide (LSD) in healthy older volunteers. Psychopharmacology, 2020, 237, 841-853.	3.1	83
13	Psychedelics, but Not Ketamine, Produce Persistent Antidepressant-like Effects in a Rodent Experimental System for the Study of Depression. ACS Chemical Neuroscience, 2020, 11, 864-871.	3.5	114
14	Classic psychedelics as therapeutics for psychiatric disorders. Handbook of Behavioral Neuroscience, 2020, 31, 959-966.	0.7	4
15	One Dose of Psilocybin in Late Adolescence Mitigates Deleterious Effects of Developmental Stress on Cognition and Behavioral Despair in Adult Female Rats. FASEB Journal, 2020, 34, 1-1.	0.5	7
16	Microdosing psychedelics: More questions than answers? An overview and suggestions for future research. Journal of Psychopharmacology, 2019, 33, 1039-1057.	4.0	121
17	5-HT2 receptor activation alleviates airway inflammation and structural remodeling in a chronic mouse asthma model. Life Sciences, 2019, 236, 116790.	4.3	33
18	Activation of 5-HT2 Receptors Reduces Inflammation in Vascular Tissue and Cholesterol Levels in High-Fat Diet-Fed Apolipoprotein E Knockout Mice. Scientific Reports, 2019, 9, 13444.	3.3	27

CHARLES D NICHOLS

#	Article	IF	CITATIONS
19	Population Survey Data Informing the Therapeutic Potential of Classic and Novel Phenethylamine, Tryptamine, and Lysergamide Psychedelics. Frontiers in Psychiatry, 2019, 10, 896.	2.6	28
20	Psychedelics Improve the Mental Health of Rats. FASEB Journal, 2019, 33, 666.1.	0.5	2
21	Elucidating Antiâ€Inflammatory Signaling Paradigm at the 5â€HT 2A Receptor. FASEB Journal, 2019, 33, 503.12.	0.5	1
22	Psychedelics as anti-inflammatory agents. International Review of Psychiatry, 2018, 30, 363-375.	2.8	122
23	Neurocytometry: Flow Cytometric Sorting of Specific Neuronal Populations from Human and Rodent Brain. ACS Chemical Neuroscience, 2017, 8, 356-367.	3.5	29
24	Psychedelic Drugs in Biomedicine. Trends in Pharmacological Sciences, 2017, 38, 992-1005.	8.7	113
25	The Effects of Hallucinogens on Gene Expression. Current Topics in Behavioral Neurosciences, 2017, 36, 137-158.	1.7	33
26	Psychedelics as Medicines: An Emerging New Paradigm. Clinical Pharmacology and Therapeutics, 2017, 101, 209-219.	4.7	202
27	Schizophrenia Modeling Using Lysergic Acid Diethylamide. , 2016, , 859-865.		1
28	Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain. EBioMedicine, 2016, 11, 262-277.	6.1	53
29	Serotonin 5-HT ₂ receptor activation prevents allergic asthma in a mouse model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L191-L198.	2.9	67
30	Visualization of the Serotonin System in Drosophila Brain: Immunofluorescence and Confocal Microscopy. Neuromethods, 2015, , 191-203.	0.3	0
31	Allergic Asthma and Serotonin 5â€HT 2 Receptor Activation: New Therapeutic Directions. FASEB Journal, 2015, 29, 775.8.	0.5	0
32	Hallucinogens Activate a Specific Population of Neurons in the Cortex. FASEB Journal, 2015, 29, 931.14.	0.5	0
33	Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia. Neuropharmacology, 2014, 83, 1-8.	4.1	49
34	DREADDs in Drosophila: A Pharmacogenetic Approach for Controlling Behavior, Neuronal Signaling, and Physiology in the Fly. Cell Reports, 2013, 4, 1049-1059.	6.4	40
35	5-HT stimulation of heart rate in <i>Drosophila</i> does not act through cAMP as revealed by pharmacogenetics. Journal of Applied Physiology, 2013, 115, 1656-1665.	2.5	22
36	RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Human Molecular Genetics, 2013, 22, 1193-1205.	2.9	187

CHARLES D NICHOLS

#	Article	IF	CITATIONS
37	Serotonin 5-HT2A Receptor Activation Blocks TNF-α Mediated Inflammation In Vivo. PLoS ONE, 2013, 8, e75426.	2.5	132
38	Serotonin receptors modulate the response to cocaine and methamphetamine in adult Drosophila. FASEB Journal, 2013, 27, .	0.5	0
39	Serotonin Receptors and Neurotransmission. , 2012, , 83-86.		0
40	Methods to Assay Drosophila Behavior. Journal of Visualized Experiments, 2012, , .	0.3	178
41	A Triple <scp>Arg</scp> Motif Mediates α ₂ <scp>_Bâ€Adrenergi</scp> c Receptor Interaction with <scp>Sec</scp> 24 <scp>C</scp> /D and Export. Traffic, 2012, 13, 857-868.	2.7	55
42	Insulin-producing cells in the brain of adult Drosophila are regulated by the serotonin 5-HT1A receptor. Cellular and Molecular Life Sciences, 2012, 69, 471-484.	5.4	100
43	Serotonin 5â€HT2A receptor activation potently inhibits TNFâ€Î± mediated inflammation in vivo, and blocks the development of asthma. FASEB Journal, 2012, 26, 1120.1.	0.5	0
44	A Novel ER Export Motif Modulates the ERâ€toâ€Cell Surface Traffic of α 2B â€Adrenergic Receptor. FASEB Journal, 2012, 26, 837.1.	0.5	0
45	Chronic LSD administration produces changes in mPFC gene and protein expression relevant to schizophrenia, as determined by RNAâ€Seq and DIGE. FASEB Journal, 2012, 26, .	0.5	0
46	An animal model of schizophrenia based on chronic LSD administration: Old idea, new results. Neuropharmacology, 2011, 61, 503-512.	4.1	53
47	Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster. Neuroscience, 2011, 192, 372-381.	2.3	67
48	Human Disease Models in <i>Drosophila melanogaster</i> and the Role of the Fly in Therapeutic Drug Discovery. Pharmacological Reviews, 2011, 63, 411-436.	16.0	849
49	The Serotonin 5-HT7Dro Receptor Is Expressed in the Brain of Drosophila, and Is Essential for Normal Courtship and Mating. PLoS ONE, 2011, 6, e20800.	2.5	96
50	Serotonin 5- Receptor Function as a Contributing Factor to Both Neuropsychiatric and Cardiovascular Diseases. Cardiovascular Psychiatry and Neurology, 2009, 2009, 1-8.	0.8	31
51	Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Frontiers in Molecular Neuroscience, 2009, 2, 16.	2.9	59
52	Anterograde Trafficking of G Protein-Coupled Receptors: Function of the C-Terminal F(X) ₆ LL Motif in Export from the Endoplasmic Reticulum. Molecular Pharmacology, 2009, 75, 751-761.	2.3	67
53	Serotonin 5-HT2 and 5-HT1A-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience, 2009, 158, 1292-1300.	2.3	120
54	Serotonin 5â€HT1Aâ€like, 5â€HT2, and 5â€HT7 Receptors Modulate Learning and Memory in Drosophila. FASEB Journal, 2009, 23, 586.11.	0.5	1

CHARLES D NICHOLS

#	Article	IF	CITATIONS
55	Serotonin 5â€HT2A receptor activity mediates adipocyte differentiation. FASEB Journal, 2009, 23, 941.5.	0.5	1
56	Origins and Effects of Extracellular α-synuclein: Implications in Parkinson's Disease. Journal of Molecular Neuroscience, 2008, 34, 17-22.	2.3	145
57	Serotonin Receptors. Chemical Reviews, 2008, 108, 1614-1641.	47.7	751
58	Nuclear translocation of p65 NF-κB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction. Cellular Signalling, 2008, 20, 186-194.	3.6	85
59	Serotonin 5-Hydroxytryptamine _{2A} Receptor Activation Suppresses Tumor Necrosis Factor-α-Induced Inflammation with Extraordinary Potency. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 316-323.	2.5	151
60	The 5â€HT 7 Dro Serotonin Receptor: Expression in the CNS and Function. FASEB Journal, 2008, 22, 1125.2.	0.5	0
61	5â€HT ₂ receptors in Drosophila are expressed in the brain and modulate aspects of circadian behaviors. Developmental Neurobiology, 2007, 67, 752-763.	3.0	67
62	Identification of neuroprotective compounds of Caenorhabditis elegans dopaminergic neurons against 6-OHDA. Journal of Molecular Neuroscience, 2007, 31, 127-137.	2.3	46
63	Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery. , 2006, 112, 677-700.		123
64	Alternative splicing removes an Ets interaction domain from Lozenge during Drosophila eye development. Development Genes and Evolution, 2005, 215, 423-435.	0.9	17
65	Serotonin Receptors and Neurotransmission. , 2004, , 93-VII.		0
66	Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-beta and ILAD-1, a novel gene with homology to arrestins. Journal of Neurochemistry, 2004, 90, 576-584.	3.9	52
67	Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration. Molecular Brain Research, 2003, 111, 182-188.	2.3	72
68	Hallucinogens and Drosophila: linking serotonin receptor activation to behavior. Neuroscience, 2002, 115, 979-984.	2.3	34
69	A Single Dose of Lysergic Acid Diethylamide Influences Gene Expression Patterns within the Mammalian Brain. Neuropsychopharmacology, 2002, 26, 634-642.	5.4	129
70	Yan regulates Lozenge during Drosophila eye development. Development Genes and Evolution, 2002, 212, 267-276.	0.9	16
71	Characterization of a hypermutable strain of Drosophila simulans. Cellular and Molecular Life Sciences, 1998, 54, 1283-1290.	5.4	6
72	Preface to the special issue "Psychedelics and Neurochemistry― Journal of Neurochemistry, 0, , .	3.9	0