
William A Truitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2688922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CNO Administration Increases Dopamine and Glutamate in the Medial Prefrontal Cortex of Wistar Rats: Further Concerns for the Validity of the CNO-activated DREADD Procedure. Neuroscience, 2022, ,	2.3	5
2	Psychosocial impairment following mild blast-induced traumatic brain injury in rats. Behavioural Brain Research, 2021, 412, 113405.	2.2	5
3	Role of Basolateral Amygdalar Somatostatin 2 Receptors in a Rat Model of Chronic Anxiety. Neuroscience, 2021, 477, 40-49.	2.3	4
4	Adolescent Intermittent Ethanol (AIE) Enhances the Dopaminergic Response to Ethanol within the Mesolimbic Pathway during Adulthood: Alterations in Cholinergic/Dopaminergic Genes Expression in the Nucleus Accumbens Shell. International Journal of Molecular Sciences, 2021, 22, 11733.	4.1	7
5	Selective breeding for high alcohol preference is associated with increased sensitivity to cannabinoid reward within the nucleus accumbens shell. Pharmacology Biochemistry and Behavior, 2020, 197, 173002.	2.9	2
6	The Rewarding and Anxiolytic Properties of Ethanol within the Central Nucleus of the Amygdala: Mediated by Genetic Background and Nociceptin. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 366-375.	2.5	10
7	Using loss- and gain-of-function approaches to target amygdala-projecting serotonergic neurons in the dorsal raphe nucleus that enhance anxiety-related and conditioned fear behaviors. Journal of Psychopharmacology, 2020, 34, 400-411.	4.0	7
8	Adolescent Intermittent Ethanol Increases the Sensitivity to the Reinforcing Properties of Ethanol and the Expression of Select Cholinergic and Dopaminergic Genes within the Posterior Ventral Tegmental Area. Alcoholism: Clinical and Experimental Research, 2019, 43, 1937-1948.	2.4	18
9	Assessment of fear and anxiety associated behaviors, physiology and neural circuits in rats with reduced serotonin transporter (SERT) levels. Translational Psychiatry, 2019, 9, 33.	4.8	17
10	Conditioned stimuli affect ethanol-seeking by female alcohol-preferring (P) rats: the role of repeated-deprivations, cue-pretreatment, and cue-temporal intervals. Psychopharmacology, 2019, 236, 2835-2846.	3.1	7
11	Selective breeding for high alcohol consumption and response to nicotine: locomotor activity, dopaminergic in the mesolimbic system, and innate genetic differences in male and female alcohol-preferring, non-preferring, and replicate lines of high-alcohol drinking and low-alcohol drinking rats. Psychopharmacology, 2018, 235, 2755-2769.	3.1	12
12	Hypothalamic orexin's role in exacerbated cutaneous vasodilation responses to an anxiogenic stimulus in a surgical menopause model. Psychoneuroendocrinology, 2016, 65, 127-137.	2.7	12
13	Ethanol and nicotine interaction within the posterior ventral tegmental area in male and female alcohol-preferring rats: evidence of synergy and differential gene activation in the nucleus accumbens shell. Psychopharmacology, 2015, 232, 639-649.	3.1	39
14	Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats. Psychopharmacology, 2015, 232, 4293-4302.	3.1	30
15	Selective breeding for high alcohol preference increases the sensitivity of the posterior <scp>VTA</scp> to the reinforcing effects of nicotine. Addiction Biology, 2014, 19, 800-811.	2.6	29
16	Reinforcing Properties and Neurochemical Response of Ethanol within the Posterior Ventral Tegmental Area Are Enhanced in Adulthood by Periadolescent Ethanol Consumption. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 317-326.	2.5	25
17	The Role of the Medial Prefrontal Cortex in Regulating Social Familiarity-Induced Anxiolysis. Neuropsychopharmacology, 2014, 39, 1009-1019.	5.4	27
18	NPY Y1 Receptors Differentially Modulate GABAA and NMDA Receptors via Divergent Signal-Transduction Pathways to Reduce Excitability of Amygdala Neurons. Neuropsychopharmacology, 2013, 38, 1352-1364.	5.4	49

WILLIAM A TRUITT

#	Article	IF	CITATIONS
19	Elucidating the biological basis for the reinforcing actions of alcohol in the mesolimbic dopamine system: the role of active metabolites of alcohol. Frontiers in Behavioral Neuroscience, 2013, 7, 104.	2.0	29
20	Orexin, stress, and anxiety/panic states. Progress in Brain Research, 2012, 198, 133-161.	1.4	178
21	Orexin 1 receptors are a novel target to modulate panic responses and the panic brain network. Physiology and Behavior, 2012, 107, 733-742.	2.1	95
22	Orexin-A induces anxiety-like behavior through interactions with glutamatergic receptors in the bed nucleus of the stria terminalis of rats. Physiology and Behavior, 2012, 107, 726-732.	2.1	98
23	Repeated exposure of the posterior ventral tegmental area to nicotine increases the sensitivity of local dopamine neurons to the stimulating effects of ethanol. Alcohol, 2012, 46, 217-223.	1.7	18
24	A Pivotal Role of Lumbar Spinothalamic Cells in the Regulation of Ejaculation via Intraspinal Connections. Journal of Sexual Medicine, 2012, 9, 2256-2265.	0.6	43
25	A key role for orexin in panic anxiety. Nature Medicine, 2010, 16, 111-115.	30.7	356
26	Cortical-Striatal Integration of Cocaine History and Prefrontal Dysfunction in Animal Modeling of Dual Diagnosis. Biological Psychiatry, 2010, 67, 788-792.	1.3	31
27	Differential Effects of Chronic Ethanol Consumption and Withdrawal on Homer/Glutamate Receptor Expression in Subregions of the Accumbens and Amygdala of P Rats. Alcoholism: Clinical and Experimental Research, 2009, 33, 1924-1934.	2.4	102
28	Neural Pathways Underlying Lactate-Induced Panic. Neuropsychopharmacology, 2008, 33, 2093-2107.	5.4	79
29	From anxiety to autism: spectrum of abnormal social behaviors modeled by progressive disruption of inhibitory neuronal function in the basolateral amygdala in Wistar rats. Psychopharmacology, 2007, 191, 107-118.	3.1	64
30	Synaptosomal protein expression in nucleus accumbens after EtOH selfâ€administration in the posterior VTA. FASEB Journal, 2007, 21, A477.	0.5	1
31	Spinal cord control of ejaculation. World Journal of Urology, 2005, 23, 119-126.	2.2	85
32	Central regulation of ejaculation. Physiology and Behavior, 2004, 83, 203-215.	2.1	224
33	Progesterone attenuates the effect of the 5-HT1A receptor agonist, 8-OH-DPAT, and of mild restraint on lordosis behavior. Brain Research, 2003, 974, 202-211.	2.2	30
34	Restraint accentuates the effects of 5-HT2 receptor antagonists and a 5-HT1A receptor agonist on lordosis behavior. Pharmacology Biochemistry and Behavior, 2003, 76, 63-73.	2.9	20
35	Activation of a Subset of Lumbar Spinothalamic Neurons after Copulatory Behavior in Male But Not Female Rats. Journal of Neuroscience, 2003, 23, 325-331.	3.6	115
36	Identification of a Potential Ejaculation Generator in the Spinal Cord. Science, 2002, 297, 1566-1569.	12.6	317

#	Article	IF	CITATIONS
37	Estrous cycle modulation of extracellular serotonin in mediobasal hypothalamus: role of the serotonin transporter and terminal autoreceptors. Brain Research, 1999, 831, 146-154.	2.2	102