## **Didier Monte**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2688486/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF          | CITATIONS   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| 1  | H19 mRNA-like Noncoding RNA Promotes Breast Cancer Cell Proliferation through Positive Control by E2F1. Journal of Biological Chemistry, 2005, 280, 29625-29636.                                                                | 3.4         | 329         |
| 2  | Colon Cancer Cells Escape 5FU Chemotherapy-Induced Cell Death by Entering Stemness and Quiescence<br>Associated with the c-Yes/YAP Axis. Clinical Cancer Research, 2014, 20, 837-846.                                           | 7.0         | 260         |
| 3  | The orphan nuclear receptor RORα is a negative regulator of the inflammatory response. EMBO Reports, 2001, 2, 42-48.                                                                                                            | 4.5         | 259         |
| 4  | Regulation of the Human P450scc Gene by Steroidogenic Factor 1 Is Mediated by CBP/p300. Journal of<br>Biological Chemistry, 1998, 273, 4585-4591.                                                                               | 3.4         | 137         |
| 5  | ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells.<br>British Journal of Cancer, 2003, 89, 120-127.                                                                             | 6.4         | 120         |
| 6  | CD3-mediated apoptosis of human medullary thymocytes and activated peripheral T cells: Respective roles of interleukin-1, interleukin-2, interferon-γ and accessory cells. European Journal of Immunology, 1993, 23, 1623-1629. | 2.9         | 114         |
| 7  | Human UDP-glucuronosyltransferase (UCT)1A3 enzyme conjugates chenodeoxycholic acid in the liver.<br>Hepatology, 2006, 44, 1158-1170.                                                                                            | 7.3         | 105         |
| 8  | Autocrine Induction of Invasive and Metastatic Phenotypes by the MIF-CXCR4 Axis in Drug-Resistant<br>Human Colon Cancer Cells. Cancer Research, 2010, 70, 4644-4654.                                                            | 0.9         | 99          |
| 9  | Involvement of Rel/Nuclear Factor-κB Transcription Factors in Keratinocyte Senescence. Cancer<br>Research, 2004, 64, 472-481.                                                                                                   | 0.9         | 97          |
| 10 | Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells. Oncogene, 2011, 30, 2514-2525.                                                                                | 5.9         | 97          |
| 11 | Expression of the PEA3 group of ETS-related transcription factors in human breast-cancer cells.<br>International Journal of Cancer, 1997, 70, 590-597.                                                                          | 5.1         | 85          |
| 12 | Structure–Function Relationships of the PEA3 Group of Ets-Related Transcription Factors.<br>Biochemical and Molecular Medicine, 1997, 61, 127-135.                                                                              | 1.4         | 84          |
| 13 | The Ets transcription factors of the PEA3 group: Transcriptional regulators in metastasis. Biochimica<br>Et Biophysica Acta: Reviews on Cancer, 2006, 1766, 79-87.                                                              | 7.4         | 76          |
| 14 | ldentification in the Human Candidate Tumor Suppressor GeneHIC-1 of a New Major Alternative<br>TATA-less Promoter Positively Regulated by p53. Journal of Biological Chemistry, 2001, 276, 3078-3089.                           | 3.4         | 69          |
| 15 | Scavenger Chemokine (CXC Motif) Receptor 7 (CXCR7) Is a Direct Target Gene of HIC1 (Hypermethylated) Tj                                                                                                                         | ETQq1 1 0.7 | 784314 rgB1 |
| 16 | The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD. Oncogene, 2002, 21, 4392-4402.                                                                            | 5.9         | 67          |
| 17 | Transcriptional Regulation of Human Rev-erbα Gene Expression by the Orphan Nuclear Receptor<br>Retinoic Acid-related Orphan Receptor α. Journal of Biological Chemistry, 2002, 277, 49275-49281.                                | 3.4         | 60          |
| 18 | Compound 48/80 is a potent inhibitor of phospholipase C and a dual modulator of phospholipase A2<br>from human platelet. Lipids and Lipid Metabolism, 1987, 920, 301-305.                                                       | 2.6         | 57          |

**DIDIER MONTE** 

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Regulation of the Human Cyclin-dependent Kinase Inhibitor p18 by the Transcription Factors E2F1 and Sp1. Journal of Biological Chemistry, 2002, 277, 31679-31693.                                                  | 3.4  | 54        |
| 20 | The methyl-CpG-binding protein MECP2 is required for prostate cancer cell growth. Oncogene, 2006, 25, 1358-1366.                                                                                                   | 5.9  | 54        |
| 21 | Crosstalk between androgen receptor and epidermal growth factor receptor-signalling pathways: a<br>molecular switch for epithelial cell differentiation. Journal of Molecular Endocrinology, 2007, 39,<br>151-162. | 2.5  | 45        |
| 22 | Twenty years of Mediator complex structural studies. Biochemical Society Transactions, 2019, 47, 399-410.                                                                                                          | 3.4  | 42        |
| 23 | SUMO Modification of the Ets-related Transcription Factor ERM Inhibits Its Transcriptional Activity.<br>Journal of Biological Chemistry, 2005, 280, 24330-24338.                                                   | 3.4  | 41        |
| 24 | ASK1 and MAP2K6 as modifiers of age at onset in Huntington's disease. Journal of Molecular Medicine,<br>2008, 86, 485-490.                                                                                         | 3.9  | 41        |
| 25 | Ets-1 p27: a novel Ets-1 isoform with dominant-negative effects on the transcriptional properties and the subcellular localization of Ets-1 p51. Oncogene, 2009, 28, 2087-2099.                                    | 5.9  | 41        |
| 26 | The E3 ubiquitin ligase complex component COP1 regulates PEA3 group member stability and transcriptional activity. Oncogene, 2010, 29, 1810-1820.                                                                  | 5.9  | 39        |
| 27 | Endospanins Regulate a Postinternalization Step of the Leptin Receptor Endocytic Pathway. Journal of<br>Biological Chemistry, 2011, 286, 17968-17981.                                                              | 3.4  | 39        |
| 28 | Regulation of cellular quiescence by YAP/TAZ and Cyclin E1 in colon cancer cells: Implication in chemoresistance and cancer relapse. Oncotarget, 2016, 7, 56699-56712.                                             | 1.8  | 36        |
| 29 | NMR structure of the human Mediator MED25 ACID domain. Journal of Structural Biology, 2011, 174, 245-251.                                                                                                          | 2.8  | 35        |
| 30 | The Mediator complex subunit MED25 is targeted by the N-terminal transactivation domain of the PEA3 group members. Nucleic Acids Research, 2013, 41, 4847-4859.                                                    | 14.5 | 29        |
| 31 | Characterization of ERM transactivation domain binding to the ACID/PTOV domain of the Mediator subunit MED25. Nucleic Acids Research, 2015, 43, 7110-7121.                                                         | 14.5 | 28        |
| 32 | Genomic Organization of the Human ERM (ETV5) Gene, a PEA3 Group Member of ETS Transcription<br>Factors. Genomics, 1996, 35, 236-240.                                                                               | 2.9  | 26        |
| 33 | Structure of UBE2Z Enzyme Provides Functional Insight into Specificity in the FAT10 Protein Conjugation Machinery. Journal of Biological Chemistry, 2016, 291, 630-639.                                            | 3.4  | 26        |
| 34 | ASK-1 (apoptosis signal-regulating kinase 1) is a direct E2F target gene. Biochemical Journal, 2006, 396, 547-556.                                                                                                 | 3.7  | 24        |
| 35 | PEA3 transcription factors are downstream effectors of Met signaling involved in migration and invasiveness of Metâ€addicted tumor cells. Molecular Oncology, 2015, 9, 1852-1867.                                  | 4.6  | 24        |
| 36 | Characterization of the human and mouse ETV1/ER81 transcription factor genes: role of the two alternatively spliced isoforms in the human. Oncogene, 1999, 18, 6278-6286.                                          | 5.9  | 23        |

**DIDIER MONTE** 

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Crystal structure of human Mediator subunit MED23. Nature Communications, 2018, 9, 3389.                                                                                                              | 12.8 | 22        |
| 38 | The 26S proteasome system degrades the ERM transcription factor and regulates its transcription-enhancing activity. Oncogene, 2007, 26, 415-424.                                                      | 5.9  | 21        |
| 39 | Solution structure of the N-terminal transactivation domain of ERM modified by SUMO-1. Biochemical and Biophysical Research Communications, 2010, 399, 104-110.                                       | 2.1  | 18        |
| 40 | Homozygous MED25 mutation implicated in eye–intellectual disability syndrome. Human Genetics, 2015,<br>134, 577-587.                                                                                  | 3.8  | 18        |
| 41 | Microphthalmia transcription factor analysis in posterior uveal melanomas. Experimental Eye<br>Research, 2003, 76, 653-661.                                                                           | 2.6  | 17        |
| 42 | Human E2F6 is alternatively spliced to generate multiple protein isoforms. Biochemical and Biophysical Research Communications, 2004, 317, 749-760.                                                   | 2.1  | 15        |
| 43 | The NRF-1/α-PAL transcription factor regulates human E2F6 promoter activity. Biochemical Journal, 2004, 383, 529-536.                                                                                 | 3.7  | 15        |
| 44 | Role of phospholipase A2 and G-proteins in the IgE-dependent activation of mast cells and macrophages. Agents and Actions, 1990, 30, 95-97.                                                           | 0.7  | 13        |
| 45 | Molecular Cloning and Characterization of the Mouse E2F6 Gene. Biochemical and Biophysical Research Communications, 2001, 288, 22-33.                                                                 | 2.1  | 13        |
| 46 | Cross-talk between YAP and RAR-RXR Drives Expression of Stemness Genes to Promote 5-FU Resistance and Self-Renewal in Colorectal Cancer Cells. Molecular Cancer Research, 2021, 19, 612-622.          | 3.4  | 13        |
| 47 | Solution Structure of the N-Terminal Domain of Mediator Subunit MED26 and Molecular<br>Characterization of Its Interaction with EAF1 and TAF7. Journal of Molecular Biology, 2017, 429,<br>3043-3055. | 4.2  | 12        |
| 48 | Genomic organization of the human e1af gene,a member of Ets transcription factors. Gene, 1999, 240, 201-207.                                                                                          | 2.2  | 11        |
| 49 | Mediator complex subunit Med19 binds directly GATA transcription factors and is required with Med1 for GATA-driven gene regulation in vivo. Journal of Biological Chemistry, 2020, 295, 13617-13629.  | 3.4  | 10        |
| 50 | The Coactivator activator CoAA regulates PEA3 group member transcriptional activity. Biochemical<br>Journal, 2011, 439, 469-477.                                                                      | 3.7  | 7         |
| 51 | Transcriptional regulation of the murine brca2 gene by CREB/ATF transcription factors. Biochemical and Biophysical Research Communications, 2003, 312, 702-707.                                       | 2.1  | 6         |
| 52 | Take Your PIC. Trends in Biochemical Sciences, 2021, 46, 705-707.                                                                                                                                     | 7.5  | 4         |
| 53 | Expression of the Ets transcription factor Erm is regulated through a conventional PKC signaling pathway in the Molt4 lymphoblastic cell line. FEBS Letters, 2005, 579, 66-70.                        | 2.8  | 3         |
| 54 | Involvement of REL/NF-B Transcription Factors in Cellular Senescence. Scientific World Journal, The, 2001, 1, 67-67.                                                                                  | 2.1  | 1         |