List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2686052/publications.pdf Version: 2024-02-01

		28274	19190
210	14,817	55	118
papers	citations	h-index	g-index
216	216	01.6	10(70
216	216	216	19670
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood, 2002, 99, 319-325.	1.4	1,107
3	Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood, 2006, 107, 4532-4539.	1.4	590
4	Targeting autophagy potentiates tyrosine kinase inhibitor–induced cell death in Philadelphia chromosome–positive cells, including primary CML stem cells. Journal of Clinical Investigation, 2009, 119, 1109-1123.	8.2	503
5	Isolation of a Highly Quiescent Subpopulation of Primitive Leukemic Cells in Chronic Myeloid Leukemia. Blood, 1999, 94, 2056-2064.	1.4	487
6	Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nature Medicine, 2017, 23, 1234-1240.	30.7	382
7	Activation of p53 by SIRT1 Inhibition Enhances Elimination of CML Leukemia Stem Cells in Combination with Imatinib. Cancer Cell, 2012, 21, 266-281.	16.8	374
8	Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood, 2012, 119, 1501-1510.	1.4	359
9	Altered Microenvironmental Regulation of Leukemic and Normal Stem Cells in Chronic Myelogenous Leukemia. Cancer Cell, 2012, 21, 577-592.	16.8	317
10	Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood, 2007, 109, 4016-4019.	1.4	283
11	Effective Targeting of Quiescent Chronic Myelogenous Leukemia Stem Cells by Histone Deacetylase Inhibitors in Combination with Imatinib Mesylate. Cancer Cell, 2010, 17, 427-442.	16.8	245
12	The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood, 2017, 129, 1595-1606.	1.4	240
13	Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt–β-catenin signaling. Blood, 2013, 121, 1824-1838.	1.4	234
14	Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature, 2016, 534, 341-346.	27.8	204
15	PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. Journal of Clinical Investigation, 2013, 123, 4144-4157.	8.2	192
16	Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood, 2014, 123, 3951-3962.	1.4	189
17	Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood, 2000, 95, 1883-1890.	1.4	182
18	Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood, 2001, 97, 720-728.	1.4	153

#	Article	IF	CITATIONS
19	Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood, 2006, 108, 1370-1373.	1.4	152
20	Rac2-MRC-cIII–generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood, 2012, 119, 4253-4263.	1.4	147
21	Punish the parent not the progeny. Blood, 2005, 105, 1862-1866.	1.4	141
22	JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood, 2014, 124, 1492-1501.	1.4	134
23	Loss or Inhibition of Stromal-Derived PIGF Prolongs Survival of Mice with Imatinib-Resistant Bcr-Abl1+ Leukemia. Cancer Cell, 2011, 19, 740-753.	16.8	124
24	Inactivation of <i>HOXA</i> Genes by Hypermethylation in Myeloid and Lymphoid Malignancy is Frequent and Associated with Poor Prognosis. Clinical Cancer Research, 2007, 13, 5048-5055.	7.0	123
25	Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nature Medicine, 2018, 24, 450-462.	30.7	123
26	Epigenetic Reprogramming Sensitizes CML Stem Cells to Combined EZH2 and Tyrosine Kinase Inhibition. Cancer Discovery, 2016, 6, 1248-1257.	9.4	120
27	BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood, 2008, 111, 2843-2853.	1.4	117
28	Early prediction of success or failure of treatment with second-generation tyrosine kinase inhibitors in patients with chronic myeloid leukemia. Haematologica, 2010, 95, 224-231.	3.5	112
29	Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood, 2011, 118, 2035-2043.	1.4	106
30	Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood, 2013, 121, 4175-4183.	1.4	105
31	A Consensus on Fungal Polymerase Chain Reaction Diagnosis?. Journal of Molecular Diagnostics, 2006, 8, 376-384.	2.8	99
32	Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia, 2019, 33, 981-994.	7.2	99
33	Effective and selective inhibition of chronic myeloid leukemia primitive hematopoietic progenitors by the dual Src/Abl kinase inhibitor SKI-606. Blood, 2008, 111, 2329-2338.	1.4	96
34	Hypusination of eukaryotic initiation factor 5A (elF5A): a novel therapeutic target in BCR-ABL–positive leukemias identified by a proteomics approach. Blood, 2007, 109, 1701-1711.	1.4	89
35	Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor–treated CML stem cells. Blood, 2016, 128, 2671-2682.	1.4	89
36	Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood, 2013, 121, 2542-2552.	1.4	87

TESSA L HOLYOAKE

#	Article	IF	CITATIONS
37	Intermittent Exposure of Primitive Quiescent Chronic Myeloid Leukemia Cells to Granulocyte-Colony Stimulating Factor <i>In vitro</i> Promotes their Elimination by Imatinib Mesylate. Clinical Cancer Research, 2006, 12, 626-633.	7.0	86
38	BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells. Blood, 2010, 115, 3185-3195.	1.4	85
39	ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy, 2016, 12, 936-948.	9.1	84
40	The Antiproliferative Activity of Kinase Inhibitors in Chronic Myeloid Leukemia Cells Is Mediated by FOXO Transcription Factors. Stem Cells, 2014, 32, 2324-2337.	3.2	83
41	Effects of Dasatinib on Src Kinase Activity and Downstream Intracellular Signaling in Primitive Chronic Myelogenous Leukemia Hematopoietic Cells. Cancer Research, 2008, 68, 9624-9633.	0.9	82
42	Transcriptional Analysis of Quiescent and Proliferating CD34+ Human Hemopoietic Cells from Normal and Chronic Myeloid Leukemia Sources. Stem Cells, 2007, 25, 3111-3120.	3.2	81
43	Autocrine TNF-α production supports CML stem and progenitor cell survival and enhances their proliferation. Blood, 2013, 122, 3335-3339.	1.4	81
44	α1-Acid glycoprotein expressed in the plasma of chronic myeloid leukemia patients does not mediate significant in vitro resistance to STI571. Blood, 2002, 99, 713-715.	1.4	79
45	Targeting BCR-ABL-Independent TKI Resistance in Chronic Myeloid Leukemia by mTOR and Autophagy Inhibition. Journal of the National Cancer Institute, 2018, 110, 467-478.	6.3	76
46	Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood, 2013, 122, 1741-1745.	1.4	75
47	Telomere Length Dynamics in Normal Individuals and in Patients with Hematopoietic Stem Cellâ€Associated Disorders. Annals of the New York Academy of Sciences, 2001, 938, 293-304.	3.8	73
48	Targeting Primitive Chronic Myeloid Leukemia Cells by Effective Inhibition of a New AHI-1–BCR-ABL–JAK2 Complex. Journal of the National Cancer Institute, 2013, 105, 405-423.	6.3	71
49	Adult hematopoietic stem cells lacking Hif- \hat{l} ± self-renew normally. Blood, 2016, 127, 2841-2846.	1.4	67
50	The hOCT1 SNPs M420del and M408V alter imatinib uptake and M420del modifies clinical outcome in imatinib-treated chronic myeloid leukemia. Blood, 2013, 121, 628-637.	1.4	66
51	Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia. Scientific Reports, 2016, 6, 25476.	3.3	66
52	Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance. Journal of Experimental Medicine, 2015, 212, 2223-2234.	8.5	65
53	Targeting survival pathways in chronic myeloid leukaemia stem cells. British Journal of Pharmacology, 2013, 169, 1693-1707.	5.4	64
54	Lineage Tracing of Pf4-Cre Marks Hematopoietic Stem Cells and Their Progeny. PLoS ONE, 2012, 7, e51361.	2.5	63

#	Article	IF	CITATIONS
55	CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood, 2016, 128, 371-383.	1.4	61
56	CML cells actively evade host immune surveillance through cytokine-mediated downregulation of MHC-II expression. Blood, 2017, 129, 199-208.	1.4	58
57	Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood, 2010, 116, 2112-2121.	1.4	56
58	Concise Review: Telomere Biology in Normal and Leukemic Hematopoietic Stem Cells. Stem Cells, 2007, 25, 1853-1861.	3.2	55
59	Autophagy in blood cancers: biological role and therapeutic implications. Haematologica, 2013, 98, 1335-1343.	3.5	54
60	Eradication of Chronic Myeloid Leukemia Stem Cells: A Novel Mathematical Model Predicts No Therapeutic Benefit of Adding G-CSF to Imatinib. PLoS Computational Biology, 2009, 5, e1000503.	3.2	53
61	Arachidonate 15-lipoxygenase is required for chronic myeloid leukemia stem cell survival. Journal of Clinical Investigation, 2014, 124, 3847-3862.	8.2	53
62	Identification of CD25 as STAT5-Dependent Growth Regulator of Leukemic Stem Cells in Ph+ CML. Clinical Cancer Research, 2016, 22, 2051-2061.	7.0	52
63	Telomere Shortening Correlates with Prognostic Score at Diagnosis and Proceeds Rapidly during Progression of Chronic Myeloid Leukemia. Leukemia and Lymphoma, 2004, 45, 1775-1781.	1.3	51
64	Bortezomib induces apoptosis in primitive chronic myeloid leukemia cells including LTC-IC and NOD/SCID repopulating cells. Blood, 2010, 115, 2241-2250.	1.4	51
65	DPPIV (CD26) as a novel stem cell marker in Ph+ chronic myeloid leukaemia. European Journal of Clinical Investigation, 2014, 44, 1239-1245.	3.4	51
66	BMS-214662 induces mitochondrial apoptosis in chronic myeloid leukemia (CML) stem/progenitor cells, including CD34+38â^ cells, through activation of protein kinase Cl². Blood, 2009, 114, 4186-4196.	1.4	46
67	CD93 is expressed on chronic myeloid leukemia stem cells and identifies a quiescent population which persists after tyrosine kinase inhibitor therapy. Leukemia, 2020, 34, 1613-1625.	7.2	46
68	BRD4-mediated repression of p53 is a target for combination therapy in AML. Nature Communications, 2021, 12, 241.	12.8	43
69	HOXA5 is targeted by cell-type-specific CpG island methylation in normal cells and during the development of acute myeloid leukaemia. Carcinogenesis, 2007, 28, 299-309.	2.8	40
70	hsa-mir183/EGR1–mediated regulation of E2F1 is required for CML stem/progenitor cell survival. Blood, 2018, 131, 1532-1544.	1.4	40
71	Abcg2 Overexpression Represents a Novel Mechanism for Acquired Resistance to the Multi-Kinase Inhibitor Danusertib in BCR-ABL-Positive Cells In Vitro. PLoS ONE, 2011, 6, e19164.	2.5	39
72	Evolving molecular therapy for chronic myeloid leukaemia—are we on target?. Hematology, 2005, 10, 349-359.	1.5	38

TESSA L HOLYOAKE

#	Article	IF	CITATIONS
73	Axl Blockade by BCB324 Inhibits BCR-ABL Tyrosine Kinase Inhibitor–Sensitive and -Resistant Chronic Myeloid Leukemia. Clinical Cancer Research, 2017, 23, 2289-2300.	7.0	38
74	Do we need more drugs for chronic myeloid leukemia?. Immunological Reviews, 2015, 263, 106-123.	6.0	37
75	Therapeutic targets in chronic myeloid leukaemia. Hematological Oncology, 2007, 25, 66-75.	1.7	34
76	A Multinational Study of Health State Preference Values Associated with Chronic Myelogenous Leukemia. Value in Health, 2010, 13, 103-111.	0.3	34
77	The use of isobaric tag peptide labeling (iTRAQ) and mass spectrometry to examine rare, primitive hematopoietic cells from patients with chronic myeloid leukemia. Molecular Biotechnology, 2007, 36, 81-89.	2.4	33
78	Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1. Leukemia, 2012, 26, 1555-1563.	7.2	33
79	Role of autophagy in cancer prevention, development and therapy. Essays in Biochemistry, 2013, 55, 133-151.	4.7	33
80	Autophagy in Chronic Myeloid Leukaemia: Stem Cell Survival and Implication in Therapy. Current Cancer Drug Targets, 2013, 13, 724-734.	1.6	32
81	Inhibition of MDR1 does not sensitize primitive chronic myeloid leukemia CD34+ cells to imatinib. Experimental Hematology, 2009, 37, 692-700.	0.4	31
82	Targeting Chronic Myeloid Leukemia Stem Cells. Current Hematologic Malignancy Reports, 2010, 5, 81-87.	2.3	30
83	Uptake of synthetic Low Density Lipoprotein by leukemic stem cells — a potential stem cell targeted drug delivery strategy. Journal of Controlled Release, 2010, 148, 380-387.	9.9	30
84	Combined bezafibrate and medroxyprogesterone acetate have efficacy without haematological toxicity in elderly and relapsed acute myeloid leukaemia (AML). British Journal of Haematology, 2010, 149, 65-69.	2.5	30
85	Targeted therapy in haematological malignancies. Journal of Pathology, 2010, 220, 404-418.	4.5	29
86	Mtss1 is a critical epigenetically regulated tumor suppressor in CML. Leukemia, 2016, 30, 823-832.	7.2	29
87	Expression of the Transcriptional Repressor Gfi-1 Is Regulated by C/EBPα and Is Involved in Its Proliferation and Colony Formation–Inhibitory Effects in p210BCR/ABL-Expressing Cells. Cancer Research, 2010, 70, 7949-7959.	0.9	27
88	Concise Review: Cancer Cells Escape from Oncogene Addiction: Understanding the Mechanisms Behind Treatment Failure for More Effective Targeting. Stem Cells, 2014, 32, 1373-1379.	3.2	27
89	Assembling defenses against therapy-resistant leukemic stem cells: Bcl6 joins the ranks. Journal of Experimental Medicine, 2011, 208, 2155-2158.	8.5	25
90	Can we afford to let sleeping dogs lie?. Blood, 2005, 105, 1840-1841.	1.4	24

#	Article	IF	CITATIONS
91	The Chronic Myeloid Leukemia Stem Cell. Clinical Lymphoma and Myeloma, 2009, 9, S376-S381.	1.4	24
92	Preclinical approaches in chronic myeloid leukemia: from cells to systems. Experimental Hematology, 2017, 47, 13-23.	0.4	24
93	Prevalence and haemopoietic effects of low serum vitamin B12levels in geriatric medical patients. British Journal of Nutrition, 1997, 78, 57-63.	2.3	23
94	Hurdles Toward a Cure for CML: The CML Stem Cell. Hematology/Oncology Clinics of North America, 2011, 25, 951-966.	2.2	23
95	A pathway from leukemogenic oncogenes and stem cell chemokines to RNA processing via THOC5. Leukemia, 2013, 27, 932-940.	7.2	23
96	Mobilization of Ph chromosomeâ€negative peripheral blood stem cells in chronic myeloid leukaemia patients with imatinib mesylateâ€induced complete cytogenetic remission. British Journal of Haematology, 2003, 123, 479-483.	2.5	21
97	In Search of CML Stem Cells' Deadly Weakness. Current Hematologic Malignancy Reports, 2011, 6, 82-87.	2.3	21
98	Episomal amplification of NUP214-ABL1 fusion gene in B-cell acute lymphoblastic leukemia. Blood, 2012, 120, 4441-4443.	1.4	21
99	Antibody-based detection of protein phosphorylation status to track the efficacy of novel therapies using nanogram protein quantities from stem cells and cell lines. Nature Protocols, 2015, 10, 149-168.	12.0	21
100	Second-generation tyrosine kinase inhibitors improve the survival of patients with chronic myeloid leukemia in whom imatinib therapy has failed. Haematologica, 2011, 96, 1779-1782.	3.5	20
101	Evolution of bone marrow transplantation – the original immunotherapy. Trends in Immunology, 2001, 22, 88-92.	6.8	18
102	Enhanced CML stem cell elimination in vitro by bryostatin priming with imatinib mesylate. Experimental Hematology, 2005, 33, 1140-1146.	0.4	18
103	A Specific PTPRC/CD45 Phosphorylation Event Governed by Stem Cell Chemokine CXCL12 Regulates Primitive Hematopoietic Cell Motility. Molecular and Cellular Proteomics, 2013, 12, 3319-3329.	3.8	18
104	Synergistic effects of proteasome inhibitor carfilzomib in combination with tyrosine kinase inhibitors in imatinib-sensitive and -resistant chronic myeloid leukemia models. Oncogenesis, 2014, 3, e90-e90.	4.9	18
105	Spirit 2: An NCRI Randomised Study Comparing Dasatinib with Imatinib in Patients with Newly Diagnosed CML. Blood, 2014, 124, 517-517.	1.4	18
106	Isolation of a Highly Quiescent Subpopulation of Primitive Leukemic Cells in Chronic Myeloid Leukemia. Blood, 1999, 94, 2056-2064.	1.4	18
107	The Ph-positive and Ph-negative myeloproliferative neoplasms: some topical pre-clinical and clinical issues. Haematologica, 2011, 96, 590-601.	3.5	17
108	A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients. Journal of Hematology and Oncology, 2017, 10, 129.	17.0	17

#	Article	IF	CITATIONS
109	A comparison of normal and leukemic stem cell biology in Chronic Myeloid Leukemia. Hematological Oncology, 2001, 19, 89-106.	1.7	16
110	Granulocyte-colony-stimulating factor (Filgrastim) may overcome imatinib-induced neutropenia in patients with chronic-phase myelogenous leukemia. Cancer, 2005, 103, 210-210.	4.1	15
111	Complete molecular responses are achieved after reduced intensity stem cell transplantation and donor lymphocyte infusion in chronic myeloid leukemia. Blood, 2008, 111, 5252-5255.	1.4	15
112	Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Review of Anticancer Therapy, 2012, 12, 381-392.	2.4	15
113	Combination of the Hedgehog Pathway Inhibitor LDE225 and Nilotinib Eliminates Chronic Myeloid Leukemia Stem and Progenitor Cells Blood, 2009, 114, 1428-1428.	1.4	15
114	Poor performance of galactomannan and mannan sandwich enzyme-linked immunosorbent assays in the diagnosis of invasive fungal infection. British Journal of Haematology, 2005, 128, 578-579.	2.5	14
115	Optimising chronic myeloid leukaemia therapy in the face of resistance to tyrosine kinase inhibitors – A synthesis of clinical and laboratory data. Blood Reviews, 2010, 24, 1-9.	5.7	14
116	BCR-ABL1 Kinase Activity but Not Its Expression Is Dispensable for Ph+ Quiescent Stem Cell Survival Which Depends on the PP2A-Controlled Jak2 Activation and Is Sensitive to FTY720 Treatment. Blood, 2010, 116, 515-515.	1.4	14
117	Redirecting traffic using the XPO1 police. Blood, 2013, 122, 2926-2928.	1.4	13
118	Dual Glutathione-S-Transferase-Î,1 and -μ1 Gene Deletions Determine Imatinib Failure in Chronic Myeloid Leukemia. Clinical Pharmacology and Therapeutics, 2014, 96, 694-703.	4.7	13
119	Response: Conventional Western blotting techniques will not reliably quantify p210 BCR-ABL. Blood, 2007, 109, 1336-1336.	1.4	12
120	Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia. Oncotarget, 2016, 7, 51651-51664.	1.8	12
121	The Dual Src/Abl Kinase Inhibitor SKI-606 Effectively Inhibits Bcr-Abl Kinase Activity and Reduces Proliferation of CML Primitive Progenitor Cells Blood, 2006, 108, 1370-1370.	1.4	12
122	HOX Genes - Candidate Tumor Suppressor Genes in Adult and Childhood Leukemia Blood, 2007, 110, 2641-2641.	1.4	12
123	Expression of p89c-Mybex9b, an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells. Blood Cancer Journal, 2012, 2, e71-e71.	6.2	11
124	CD34+ Cells Can Be Selected Efficiently from Cryopreserved Peripheral Blood Progenitor Cells and Can Retain Their Proliferative Potential. Stem Cells and Development, 1997, 6, 501-510.	1.0	10
125	The Number of CD34+Cells Mobilized into the Peripheral Blood Can Predict the Quality of Subsequent Collections. Journal of Hematotherapy and Stem Cell Research, 2000, 9, 89-93.	1.8	9
126	In vivo expansion of the endogenous B-cell compartment stimulated by radiation and serial bone marrow transplantation induces B-cell leukaemia in mice. British Journal of Haematology, 2001, 114, 49-56.	2.5	9

#	Article	IF	CITATIONS
127	Isolation and therapeutic potential of human haemopoietic stem cells. Cytotechnology, 2003, 41, 111-131.	1.6	9
128	Optimization of methods for the detection of BCR-ABL activity in Philadelphia-positive cells. Experimental Hematology, 2009, 37, 395-401.	0.4	9
129	Hydroxychloroquine for chronic myeloid leukemia: complete cure on the horizon?. Expert Review of Hematology, 2011, 4, 369-371.	2.2	9
130	<scp>BCR</scp> â€ <scp>ABL</scp> 1 tyrosine kinase sustained <scp><i>MECOM</i></scp> expression in chronic myeloid leukaemia. British Journal of Haematology, 2012, 157, 446-456.	2.5	9
131	Safety and efficacy of pulsed imatinib with or without <scp>G</scp> â€ <scp>CSF </scp> <i>versus</i> continuous imatinib in chronic phase chronic myeloid leukaemia patients at 5Âyears followâ€up. British Journal of Haematology, 2013, 163, 674-676.	2.5	8
132	Effective Induction of Apoptosis in Chronic Myeloid Leukemia CD34+ Cells by the Histone Deacetylase Inhibitor LAQ824 in Combination with Imatinib Blood, 2007, 110, 1031-1031.	1.4	8
133	Inhibition of Chronic Myeloid Leukemia Stem Cells by the Combination of the Hedgehog Pathway Inhibitor LDE225 with Nilotinib. Blood, 2010, 116, 514-514.	1.4	8
134	Predictive response-relevant clustering of expression data provides insights into disease processes. Nucleic Acids Research, 2010, 38, 6831-6840.	14.5	7
135	Restricted access to second generation tyrosine kinase inhibitors in the UK could result in suboptimal treatment for almost half of chronic myeloid leukaemia patients: results from a West of Scotland and Lothian population study. British Journal of Haematology, 2011, 155, 128-130.	2.5	7
136	BMS-214662 Eliminates CML Stem Cells and Is Active Against Blast Crisis CML and Cells Expressing BCR-ABL Kinase Mutations Blood, 2006, 108, 739-739.	1.4	7
137	Nilotinib concentration in Cell Lines and CML CD34+ Cells Is Not Mediated by Active Uptake or Efflux by Major Drug Transporters. Blood, 2008, 112, 3205-3205.	1.4	7
138	Assessment of Quality of Life in the NCRI Spirit 2 Study Comparing Imatinib with Dasatinib in Patients with Newly-Diagnosed Chronic Phase Chronic Myeloid Leukaemia. Blood, 2015, 126, 4024-4024.	1.4	7
139	FOXO transcription factor activity is partially retained in quiescent CML stem cells and induced by tyrosine kinase inhibitors in CML progenitor cells. Blood, 2009, , .	1.4	6
140	Quantitative proteomics analysis of <scp>BMS</scp> â€214662 effects on <scp>CD</scp> 34 positive cells from chronic myeloid leukaemia patients. Proteomics, 2013, 13, 153-168.	2.2	6
141	Effects of the novel aurora kinase/JAK inhibitor, AT9283 and imatinib on Philadelphia positive cells in vitro. Blood Cells, Molecules, and Diseases, 2012, 48, 199-201.	1.4	5
142	Investigation of a minor groove-binding polyamide targeted to E2F1 transcription factor in chronic myeloid leukaemia (CML) cells. Blood Cells, Molecules, and Diseases, 2018, 69, 119-122.	1.4	5
143	Imatinib Mesylate Does Not Inhibit BCR-ABL Kinase Activity in CML Stem Cells In Vitro Blood, 2004, 104, 1979-1979.	1.4	5
144	BMS-214662 Targets Quiescent Chronic Myeloid Leukaemia Stem Cells and Enhances the Activity of Both Imatinib and Dasatinib (BMS-354825) Blood, 2005, 106, 693-693.	1.4	5

#	Article	IF	CITATIONS
145	Foxo Transcription Factor Activity Is Retained in Quiescent Chronic Myeloid Leukaemia Stem Cells and Activated by Tyrosine Kinase Inhibitors to Mediate "induced-quiescence―in More Mature progenitors Blood, 2009, 114, 187-187.	1.4	5
146	Alterations In Wnt Signalling In the Megakaryocytic Lineage Leads to Bone Marrow Failure and Myelofibrosis. Blood, 2010, 116, 628-628.	1.4	5
147	Published rather than Proposed Definitions for Invasive Fungal Infection Must Be Applied to Allow Standardization in Clinical Trials. Clinical Infectious Diseases, 2004, 38, 1648-1649.	5.8	4
148	High loading dose AmBisome(R) is efficacious and well tolerated in the management of invasive fungal infection in hematology patients. Haematologica, 2007, 92, 572-573.	3.5	4
149	Repositioned to kill stem cells. Nature, 2015, 525, 328-329.	27.8	4
150	Lifting the Differentiation Embargo. Cell, 2016, 167, 45-46.	28.9	4
151	Stem cells in chronic myeloid leukaemia. Cancer Biomarkers, 2007, 3, 183-191.	1.7	3
152	Dasatinib (BMS-354825) Has Increased Activity Against Bcr-Abl Compared to Imatinib in Primary CML Cells In Vitro, but Does Not Eradicate Quiescent CML Stem Cells Blood, 2005, 106, 695-695.	1.4	3
153	Bortezomib Has Anti-Proliferative and Apoptotic Effects Against CML Stem Cells, Including the Quiescent Population Blood, 2007, 110, 2943-2943.	1.4	3
154	Combination Therapy of Small Molecule Inhibitor PHA-739358 and Tyrosine Kinase Inhibitor Imatinib Yields Synergistic Antiproliferative Effects and Suppresses Emergence of Resistance of Chronic Myeloid Leukemia in Vitro. Blood, 2008, 112, 3227-3227.	1.4	3
155	HIF-1α Is Not Essential For The Establishment Of MLL-Leukaemic Stem Cells. Blood, 2013, 122, 3767-3767.	1.4	3
156	Combined BCR-ABL inhibition with lentiviral-delivered shRNA and dasatinib augments induction of apoptosis in Philadelphia-positive cells. Experimental Hematology, 2009, 37, 206-214.	0.4	2
157	Investigation into omacetaxine solution stability for <i>in vitro</i> study. Biomedical Chromatography, 2012, 26, 545-547.	1.7	2
158	Enhanced Primary CML Stem Cell Elimination by Bryostatin Priming with Imatinib Mesylate In Vitro Blood, 2004, 104, 1997-1997.	1.4	2
159	Inhibition of Hypusination of Eukaryotic Initiation Factor 5a (eIF-5A) as a Novel a Synergistic Treatment Strategy in Imatinib-Treated BCR-ABL Positive Leukemias Identified by a Global Proteomics Approach Blood, 2005, 106, 1997-1997.	1.4	2
160	A Phase 3 Pilot Study of Continuous Imatinib Versus Pulsed Imatinib with or without G-CSF in Patients with Chronic Phase CML Who Have Achieved a Complete Cytogenetic Response to Imatinib Blood, 2007, 110, 1033-1033.	1.4	2
161	Therapy Resistant CML Stem Cells Are Dependent on Mitochondrial Oxidative Metabolism for Their Survival. Blood, 2016, 128, 932-932.	1.4	2
162	Combined Targeting of BCR-ABL and JAK2 with ABL and JAK2 Inhibitors Is Effective Against CML Patients' Leukemic Stem/Progenitor Cells Blood, 2010, 116, 3404-3404.	1.4	2

#	Article	IF	CITATIONS
163	Targeting autophagy potentiates tyrosine kinase inhibitor–induced cell death in Philadelphia chromosome–positive cells, including primary CML stem cells. Journal of Clinical Investigation, 2013, 123, 3634-3634.	8.2	2
164	Analysis of imatinib in bone marrow and plasma samples of chronic myeloid leukaemia patients using solid phase extraction LC-ESI-MS. Pakistan Journal of Pharmaceutical Sciences, 2011, 24, 285-91.	0.2	2
165	Acute Cardiotoxicity After Daunorubicin in Acute Myeloid Leukaemia. Leukemia and Lymphoma, 1991, 3, 305-307.	1.3	1
166	Prediction of initial cytogenetic response for subsequent major and complete cytogenetic response to imatinib mesylate therapy in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. Cancer, 2003, 98, 1776-1777.	4.1	1
167	Nilotinib Inhibits Bcr-Abl Kinase Activity in CML Progenitor Cells More Effectively Than Imatinib but Is Equipotent in Inducing Growth Inhibition Blood, 2006, 108, 744-744.	1.4	1
168	Normal Short-Term but Reduced Long-Term Engraftment Capacity of CML Hematopoietic Cells with Skewed Myeloid Lineage Differentiation Is Seen in an Improved Mouse Model of Human Hematopoiesis Blood, 2007, 110, 3383-3383.	1.4	1
169	Targeting Autophagy Potentiates Imatinib-Induced Cell Death in Philadelphia Positive Cells Including Primary CML Stem Cells Blood, 2008, 112, 1070-1070.	1.4	1
170	Resistance to Danusertib (formerly PHA-739358) in BCR-ABL-Positive Cells Is Mediated by Upregulation of the Drug Transporter Abcg2 and Can Be Suppressed in Vitro by Combination Treatment with Imatinib Blood, 2009, 114, 1724-1724.	1.4	1
171	Inhibition Of Microenvironmental Interleukin-1 Signaling Enhances TKI-Mediated Targeting Of Chronic Myelogenous Leukemia Stem Cells. Blood, 2013, 122, 512-512.	1.4	1
172	Cytomegalovirus Infection Is Associated with Expansions of CD8 T Cells and Highly Oligoclonal Vdelta1 Gamma/Delta T Cells in Patients Treated with Dasatinib for Chronic Myelogenous Leukaemia. Blood, 2014, 124, 1814-1814.	1.4	1
173	Notch Pathway Activation Targets Leukemic Stem Cells in Chronic-Phase Chronic Myeloid Leukemia (CP-CML). Blood, 2016, 128, 3057-3057.	1.4	1
174	C-CSF as a Potent Mitogen Augments the Elimination of CML Stem Cells by Imatinib Mesylate In Vitro Blood, 2004, 104, 2941-2941.	1.4	1
175	Imatinib Followed by Reduced Intensity Stem Cell Transplantation and Donor Lymphocyte Infusions Is Effective in Chronic Phase CML with Less Toxicity Than Standard Allogeneic Transplantation Blood, 2005, 106, 1125-1125.	1.4	1
176	Reversible Transplantable Chronic Phase CML-Like Disease in SCLtTA/BCR-ABL Transgenic Mice Blood, 2007, 110, 1002-1002.	1.4	1
177	Inhibition of Autophagy in Combination with Ponatinib or Dual PI3K/mTOR Inhibition to Improve Treatment Response for Both Bcr-Abl Dependent and Independent Mechanisms of TKI-Resistance in CML. Blood, 2012, 120, 1664-1664.	1.4	1
178	Microenvironmental Protection of CML Stem and Progenitor Cells From Tyrosine Kinase Inhibitors Through N-Cadherin and Wnt Signaling. Blood, 2012, 120, 912-912.	1.4	1
179	Metastasis Suppressor 1 Is Downregulated in CML Stem Cells and Overexpression Impairs Early Leukemic Cell Propagation Blood, 2012, 120, 2776-2776.	1.4	1
180	BGB324 Represents an Axl and BCR-ABL1 Inhibitor with Activity in the T315I Mutant. Blood, 2014, 124, 4512-4512.	1.4	1

#	Article	IF	CITATIONS
181	BCR-ABL FISH monitoring of CML: a survey of current UK practice. British Journal of Haematology, 2002, 119, 272-273.	2.5	0
182	GATA1 mutational analysis in chronic myeloid leukaemia. British Journal of Haematology, 2007, 137, 375-376.	2.5	0
183	Bayesian inference for model selection: an application to aberrant signalling pathways in chronic myeloid leukaemia. , 0, , 161-190.		0
184	Casting a NETwork instead of shooting magic bullets. Cell Cycle, 2016, 15, 3147-3148.	2.6	0
185	Functional ABCC2 Is Expressed on CML Stem Cells and Its Inhibition Selectively Depletes CML CD34+ Cells Blood, 2004, 104, 716-716.	1.4	0
186	Gene Expression Profiling in Quiescent Stem Cells from Normal and Chronic Myeloid Leukaemia Patients Blood, 2004, 104, 2962-2962.	1.4	0
187	The Role of DNA Methylation of HoxA5, a Regulator of Haematopoiesis, in Progression to Myeloid Blast Crisis in CML Blood, 2004, 104, 2053-2053.	1.4	0
188	Combination of Imatinib and Hypusination Inhibitors Represents a Novel Therapeutic Strategy in Bcr-Abl Positive Leukemias Blood, 2006, 108, 1379-1379.	1.4	0
189	Protection of CML Progenitors from Bcr-Abl Tyrosine Kinase Inhibitor Mediated Apoptosis by the Bone Marrow Stromal Microenvironment Blood, 2007, 110, 3378-3378.	1.4	0
190	Reduced Intensity Stem Cell Transplantation and Donor Lymphocyte Infusion after Imatinib Induction To Eradicate Residual Disease in Chronic Myeloid Leukaemia Blood, 2007, 110, 1097-1097.	1.4	0
191	Effect of Dasatinib on BCR-ABL and Src Mediated Growth Signaling in Primary CML Hematopoietic Progenitors Blood, 2007, 110, 2944-2944.	1.4	0
192	Growth Factor Deprivation Combined with Prolonged Inhibition of BCR-ABL Does Not Eradicate Functional CML Stem Cells. Blood, 2008, 112, 4222-4222.	1.4	0
193	Mtss1 Suppresses BCR-ABL Induced Cell Migration and Is Downregulated in CML Stem Cells Blood, 2008, 112, 1077-1077.	1.4	0
194	N-Cadherin-Mediated Microenvironmental Interactions Protect CML Stem Cells from Imatinib Mediated Apoptosis Blood, 2008, 112, 1073-1073.	1.4	0
195	Stem Cells in Leukemia and Other Hematological Malignancies. , 2009, , 111-136.		0
196	Effective Targeting of Quiescent CML Stem Cells by Histone Deacetylase Inhibitors in Combination with Imatinib Mesylate Blood, 2009, 114, 190-190.	1.4	0
197	Placental Growth Factor: a Novel, Stromal-Derived Target in Human CML Blood, 2009, 114, 42-42.	1.4	0
198	BMS-214662 Eliminates Quiescent and Proliferating Acute Myeloid Leukemia Cells through Activation of Protein Kinase Cl2 and Enhances the Efficacy of Cytosine Arabinoside, Blood, 2010, 116, 2167-2167	1.4	0

#	Article	IF	CITATIONS
199	SIRT1 Inhibition Induces Apoptosis In Human CML Progenitors by Enhancing p53 Acetylation and Activation. Blood, 2010, 116, 200-200.	1.4	0
200	Leukemia-Induced Alterations in Bone Marrow Cytokine and Chemokine Levels Contribute to Altered Stem Cell Lodgment and Impairment of Normal Stem Cell Growth in CML. Blood, 2011, 118, 962-962.	1.4	0
201	Targeting Rac2 - Mitochondrial Respiratory Chain Complex III Signaling to Prevent Genomic Instability in Leukemia Stem and Progenitor Cells. Blood, 2011, 118, 2736-2736.	1.4	0
202	Pharmacological Inhibition of the Stress-Related Deacetylase SIRT1 Enhances Eradication of CML stem Cells. Blood, 2011, 118, 448-448.	1.4	0
203	p53 and c-Myc Are Critical Signaling Hubs That Maintain Chronic Myeloid Leukemia. Blood, 2013, 122, 1465-1465.	1.4	0
204	Axl Represents a Therapeutic Target In T315I-Mutated and WT Chronic Myeloid Leukemia. Blood, 2013, 122, 1469-1469.	1.4	0
205	Misregulation Of The PRC2 Complex In CML Stem Cells Confers Sensitivity To An EZH2 Inhibitor. Blood, 2013, 122, 2710-2710.	1.4	0
206	Role of Enhanced Microenvironmental Interleukin-1 (IL-1) Expression and Increased IL-1 Responsiveness in Persistence of Leukemia Stem Cells in TKI Treated CML Patients. Blood, 2014, 124, 4357-4357.	1.4	0
207	Effective and Selective Elimination of CML Stem Cells Using Novel Ethacrynic Acid Derivatives. Blood, 2014, 124, 4508-4508.	1.4	0
208	Reliable Detection of Abl Tyrosine Kinase Domain Mutations to <1% Using NGS Data Quality Parsing and Corroboration of Overlapping Paired-End Sequences. Blood, 2015, 126, 4021-4021.	1.4	0
209	BGB324 Inhibits BCR-ABL TKI-Resistant Chronic Myeloid Leukemia. Blood, 2015, 126, 1569-1569.	1.4	0
210	Validating a network hub in leukaemia stem cells. Oncoscience, 2017, 4, 3-4.	2.2	0