
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/26858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	C—H Bond Activation in Transition Metal Species from a Computational Perspective. Chemical Reviews, 2010, 110, 749-823.	23.0	959
2	A New Intermolecular Interaction:  UnconventionalHydrogen Bonds with Elementâ^'Hydride Bonds as ProtonAcceptor. Accounts of Chemical Research, 1996, 29, 348-354.	7.6	639
3	Highly Active and Robust Cp* Iridium Complexes for Catalytic Water Oxidation. Journal of the American Chemical Society, 2009, 131, 8730-8731.	6.6	561
4	Half-Sandwich Iridium Complexes for Homogeneous Water-Oxidation Catalysis. Journal of the American Chemical Society, 2010, 132, 16017-16029.	6.6	507
5	Câ^'F and Câ^'H Bond Activation of Fluorobenzenes and Fluoropyridines at Transition Metal Centers: How Fluorine Tips the Scales. Accounts of Chemical Research, 2011, 44, 333-348.	7.6	430
6	Transition Metal Polyhydrides:  From Qualitative Ideas to Reliable Computational Studies. Chemical Reviews, 2000, 100, 601-636.	23.0	341
7	Iridium-Catalyzed Hydrogenation of N-Heterocyclic Compounds under Mild Conditions by an Outer-Sphere Pathway. Journal of the American Chemical Society, 2011, 133, 7547-7562.	6.6	296
8	Do f Electrons Play a Role in the Lanthanideâ^'Ligand Bonds? A DFT Study of Ln(NR2)3; R = H, SiH3. Journal of Physical Chemistry A, 2000, 104, 7140-7143.	1.1	292
9	Selectivity of C–H Activation and Competition between C–H and C–F Bond Activation at Fluorocarbons. Chemical Reviews, 2017, 117, 8710-8753.	23.0	265
10	Linear-Selective Hydroarylation of Unactivated Terminal and Internal Olefins with Trifluoromethyl-Substituted Arenes. Journal of the American Chemical Society, 2014, 136, 13098-13101.	6.6	263
11	Transition-metal complexed olefins: how their reactivity toward a nucleophile relates to their electronic structure. Journal of the American Chemical Society, 1981, 103, 4308-4320.	6.6	254
12	Interactions between Cî—,H and Nî—,H bonds and d8 square planar metal complexes: hydrogen bonded or agostic?. Inorganica Chimica Acta, 1997, 254, 105-111.	1.2	248
13	Factors Affecting the Strength of N-H.cntdotcntdotcntdot.H-Ir Hydrogen Bonds. Journal of the American Chemical Society, 1995, 117, 3485-3491.	6.6	244
14	Computed Ligand Electronic Parameters from Quantum Chemistry and Their Relation to Tolman Parameters, Lever Parameters, and Hammett Constants. Inorganic Chemistry, 2001, 40, 5806-5811.	1.9	233
15	An attractive cis-effect of hydride on neighbor ligands: experimental and theoretical studies on the structure and intramolecular rearrangements of Fe(H)2(.eta.2-H2)(PEtPh2)3. Journal of the American Chemical Society, 1990, 112, 4831-4841.	6.6	226
16	Imidazolium Carboxylates as Versatile and Selective N-Heterocyclic Carbene Transfer Agents: Synthesis, Mechanism, and Applications. Journal of the American Chemical Society, 2007, 129, 12834-12846.	6.6	213
17	Understanding d0-Olefin Metathesis Catalysts:Â Which Metal, Which Ligands?. Journal of the American Chemical Society, 2007, 129, 8207-8216.	6.6	210
18	Theoretical study of the structures of electron-deficient d6 ML5 complexes. Importance of a .pidonating ligand. Organometallics, 1992, 11, 729-737.	1.1	204

#	Article	IF	CITATIONS
19	An Unconventional Intermolecular Three-Center N–H… H2Re Hydrogen Bond in Crystalline[ReH5(PPh3)3]·indole·C6H6. Angewandte Chemie International Edition in English, 1995, 34, 2507-2509.	4.4	195
20	Hydrogen for Fluorine Exchange in C6F6and C6F5H by Monomeric [1,3,4-(Me3C)3C5H2]2CeH:Â Experimental and Computational Studies. Journal of the American Chemical Society, 2005, 127, 279-292.	6.6	190
21	Superjacent orbital control. Interpretation of the anomeric effect. Journal of the American Chemical Society, 1973, 95, 3806-3807.	6.6	186
22	An Anion-Dependent Switch in Selectivity Results from a Change of Câ´'H Activation Mechanism in the Reaction of an Imidazolium Salt with IrH5(PPh3)2. Journal of the American Chemical Society, 2005, 127, 16299-16311.	6.6	172
23	Exceptional Sensitivity of Metalâ aryl Bond Energies to <i>ortho</i> -Fluorine Substituents: Influence of the Metal, the Coordination Sphere, and the Spectator Ligands on Mâ C/Hâ C Bond Energy Correlations. Journal of the American Chemical Society, 2009, 131, 7817-7827.	6.6	172
24	Dinitrogen Dissociation on an Isolated Surface Tantalum Atom. Science, 2007, 317, 1056-1060.	6.0	163
25	Computational structure–activity relationships in H2storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chemical Communications, 2007, , 2231-2233.	2.2	163
26	Hydrofluoroarylation of Alkynes with Ni Catalysts. C–H Activation via Ligand-to-Ligand Hydrogen Transfer, an Alternative to Oxidative Addition. Organometallics, 2012, 31, 1300-1314.	1.1	161
27	Outer sphere hydrogenation catalysis. New Journal of Chemistry, 2013, 37, 21-27.	1.4	161
28	d0Re-Based Olefin Metathesis Catalysts, Re(â‹®CR)(CHR)(X)(Y):Â The Key Role of X and Y Ligands for Efficient Active Sites. Journal of the American Chemical Society, 2005, 127, 14015-14025.	6.6	158
29	A Well-Defined, Silica-Supported Tungsten Imido Alkylidene Olefin Metathesis Catalyst. Organometallics, 2006, 25, 3554-3557.	1.1	152
30	Catecholborane Bound to Titanocene. Unusual Coordination of Ligand σ-Bonds. Journal of the American Chemical Society, 1996, 118, 10936-10937.	6.6	151
31	Wittig versus Corey-Chaykovsky Reaction. Theoretical study of the reactivity of phosphonium methylide and sulfonium methylide with formaldehyde. Journal of the American Chemical Society, 1987, 109, 1-14.	6.6	149
32	Mechanism of Homogeneous Iridium-Catalyzed Alkylation of Amines with Alcohols from a DFT Study. Organometallics, 2008, 27, 2529-2535.	1.1	149
33	A molecular orbital analysis of the regioselectivity of nucleophilic addition to .eta.3-allyl complexes and the conformation of the .eta.3-allyl ligand in L3(CO)2(.eta.3-C3H5)Mo(II) complexes. Organometallics, 1984, 3, 887-895.	1.1	141
34	Agostic Interactions from a Computational Perspective: One Name, Many Interpretations. Structure and Bonding, 2004, , 1-36.	1.0	132
35	Decamethylscandocinium-hydrido-(perfluorophenyl)borate: fixation and tandem tris(perfluorophenyl)borane catalysed deoxygenative hydrosilation of carbon dioxide. Chemical Science, 2013, 4, 2152.	3.7	132
36	.piStabilized, yet Reactive, Half-Sandwich Cp*Ru(PR3)X Compounds: Synthesis, Structure, and Bonding. Inorganic Chemistry, 1995, 34, 488-499.	1.9	130

#	Article	IF	CITATIONS
37	RuHX(CO)(PR3)2: Can .nu.CO Be a Probe for the Nature of the Ru-X Bond?. Inorganic Chemistry, 1994, 33, 1476-1485.	1.9	122
38	Computational Evidence of the Importance of Substituent Bulk on Agostic Interactions in Ir(H)2(PtBu2Ph)2+. Journal of the American Chemical Society, 1998, 120, 361-365.	6.6	121
39	Shutting Down Secondary Reaction Pathways: The Essential Role of the Pyrrolyl Ligand in Improving Silica Supported d ⁰ -ML ₄ Alkene Metathesis Catalysts from DFT Calculations. Journal of the American Chemical Society, 2010, 132, 7750-7757.	6.6	121
40	Neutron structure and inelastic-neutron-scattering and theoretical studies of molybdenum complex Mo(CO)(H2)[(C6D5)2PC2H4P(C6D5)2]2.cntdot.4.5C6D6, a complex with an extremely low barrier to hydrogen rotation. Implications on the reaction coordinate for H-H cleavage to dihydride. Journal of the American Chemical Society, 1993, 115, 569-581.	6.6	117
41	Energetics of Câ^'H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [Tp′Rh(CNneopentyl)] Complex. Journal of the American Chemical Society, 2009, 131, 13464-13473.	6.6	117
42	Reaction of molecular hydrogen (H2) with chlorohydridoiridium phosphines IrHCl2P2 (P = PPr-iso3 or) Tj ETQqO Journal of the American Chemical Society, 1993, 115, 7300-7312.	0 0 rgBT /0 6.6	Overlock 10 Ti 116
43	Decamethylytterbocene Complexes of Bipyridines and Diazabutadienes: Multiconfigurational Ground States and Open-Shell Singlet Formation. Journal of the American Chemical Society, 2009, 131, 6480-6491.	6.6	112
44	Hydride Is Not a Spectator Ligand in the Formation of Hydrido Vinylidene from Terminal Alkyne and Ruthenium and Osmium Hydrides:Â Mechanistic Differences. Organometallics, 1998, 17, 3091-3100.	1.1	111
45	Orbital factors and asymmetric induction. Journal of the American Chemical Society, 1973, 95, 6146-6147.	6.6	109
46	Lone pairs in organic molecules: Energetic and orientational non-equivalence. Tetrahedron, 1974, 30, 1717-1723.	1.0	109
47	Preferential C-Binding versus N-Binding in Imidazole Depends on the Metal Fragment Involved. Inorganic Chemistry, 2002, 41, 602-604.	1.9	107
48	Computational and Experimental Test of Steric Influence on Agostic Interactions:Â A Homologous Series for Ir(III). Journal of the American Chemical Society, 1999, 121, 97-106.	6.6	105
49	Factors favoring an MH-C interaction in metal-methyl complexes. An MO analysis. Journal of the American Chemical Society, 1985, 107, 1177-1186.	6.6	104
50	Simple prediction of cycloaddition orientation I—diels-alder reactions. Tetrahedron, 1977, 33, 523-531.	1.0	104
51	An Experimentalâ^'Theoretical Study of the Factors That Affect the Switch between Ruthenium-Catalyzed Dehydrogenative Amide Formation versus Amine Alkylation. Organometallics, 2010, 29, 6548-6558.	1.1	103
52	Single but Stronger UO, Double but Weaker UNMe Bonds:  The Tale Told by Cp ₂ UO and Cp ₂ UNR. Organometallics, 2007, 26, 5059-5065.	1.1	102
53	Manganese Catalysts for Câ^'H Activation: An Experimental/Theoretical Study Identifies the Stereoelectronic Factor That Controls the Switch between Hydroxylation and Desaturation Pathways. Journal of the American Chemical Society, 2010, 132, 7605-7616.	6.6	100
54	Biscarbeneâ^'Ruthenium Complexes in Catalysis: Novel Stereoselective Synthesis of (1E,3E)-1,4-Disubstituted-1,3-dienes via Head-to-Head Coupling of Terminal Alkynes and Addition of Carboxylic Acids. Journal of the American Chemical Society, 2003, 125, 11964-11975.	6.6	99

#	Article	IF	CITATIONS
55	Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d ⁰ Olefin Metathesis Catalysts. Journal of the American Chemical Society, 2016, 138, 2261-2272.	6.6	99
56	Dynamics of Silica-Supported Catalysts Determined by Combining Solid-State NMR Spectroscopy and DFT Calculations. Journal of the American Chemical Society, 2008, 130, 5886-5900.	6.6	98
57	Entropy Explained: The Origin of Some Simple Trends. Journal of Chemical Education, 2002, 79, 1269.	1.1	96
58	Intermediate-Valence Tautomerism in Decamethylytterbocene Complexes of Methyl-Substituted Bipyridines. Journal of the American Chemical Society, 2010, 132, 17537-17549.	6.6	92
59	Hydrogen for Fluorine Exchange in CH4-xFxby Monomeric [1,2,4-(Me3C)3C5H2]2CeH:Â Experimental and Computational Studies. Journal of the American Chemical Society, 2005, 127, 7781-7795.	6.6	91
60	Structure and H2-Loss Energies of OsHX(H2)(CO)L2Complexes (L = P(t-Bu)2Me, P(i-Pr)3; X = Cl, I, H):Â Attempted Correlation of1J(Hâ^'D),T1min, and ΔGâ§§. Inorganic Chemistry, 1996, 35, 6775-6783.	1.9	90
61	Inertness of the Arylâ^'F Bond toward Oxidative Addition to Osmium and Rhodium Complexes: Thermodynamic or Kinetic Origin?. Journal of the American Chemical Society, 1998, 120, 12634-12640.	6.6	90
62	Carbon Monoxide Activation via O-Bound CO Using Decamethylscandocinium–Hydridoborate Ion Pairs. Journal of the American Chemical Society, 2012, 134, 10843-10851.	6.6	90
63	M–C bond strength to substituentsElectronic supplementary information (ESI) available: methods of calculation; Fig. S1: Comparison of calculated and experimental C–H bond dissociation energies for organic molecules; Table S1, comparison of calculated and experimental CO-stretching frequencies; Table S2, total energies. BDE for Re–C and H–C: Table S3. NPA charges o(C) and o(aryl) for the organic	2.2	89
64	From three- to four-coordination in copper(I) and silver(I). Inorganic Chemistry, 1992, 31, 1758-1762.	1.9	88
65	γ Agostic C–H or β agostic Si–C bonds in La{CH(SiMe3)2}3? A DFT study of the role of the ligand. New Journal of Chemistry, 2003, 27, 121-127.	1.4	88
66	β-H Transfer from the Metallacyclobutane: A Key Step in the Deactivation and Byproduct Formation for the Well-Defined Silica-Supported Rhenium Alkylidene Alkene Metathesis Catalyst. Journal of the American Chemical Society, 2008, 130, 6288-6297.	6.6	88
67	Coordinated carbenes from electron-rich olefins on RuHCl(PPr3i)2. New Journal of Chemistry, 2000, 24, 9-26.	1.4	87
68	A Rational Basis for the Axial Ligand Effect in Câ^'H Oxidation by [MnO(porphyrin)(X)]+ (X = H2O, OHâ^',) Tj ETQ	q0.0,0 rgB 1.9	T Overlock 87
69	Activation of a coordinated olefin toward nucleophilic attack. Journal of the American Chemical Society, 1980, 102, 6148-6149.	6.6	86
70	The First η2-CH2Cl2 Adduct of Ru(II):[RuH(η2-CH2Cl2)(CO)(PtBu2Me)2][BArâ€~4] (Arâ€~ = 3,5-C6H3(CF3)2) and RuH(CO)(PtBu2Me)2+ Precursor. Journal of the American Chemical Society, 1997, 119, 7398-7399.	llts 6.6	86
71	New types of hydrogen bonds. Journal of Organometallic Chemistry, 1998, 567, 7-11.	0.8	86

72Some geometrical and electronic features of the intermediate stages of olefin metathesis. Journal of
the American Chemical Society, 1981, 103, 5582-5584.6.685

#	Article	IF	CITATIONS
73	Defluorination of Perfluoropropene Using Cp*2ZrH2and Cp*2ZrHF:Â A Mechanism Investigation from a Joint Experimentalâ^'Theoretical Perspective. Journal of the American Chemical Society, 2004, 126, 5647-5653.	6.6	85
74	Osmium Converts Terminal Olefins to Carbynes: α-Hydrogen Migration Redox Isomers with Reversed Stability for Ruthenium and for Osmium. Organometallics, 1998, 17, 999-1001.	1.1	84
75	DFT Study of Hâ^'H Activation by Cp2LnH d0Complexes. Journal of the American Chemical Society, 2001, 123, 1036-1039.	6.6	84
76	Outer sphere anion participation can modify the mechanism for conformer interconversion in Pd pincer complexes. Dalton Transactions, 2003, , 831-838.	1.6	84
77	Metathesis Activity Encoded in the Metallacyclobutane Carbon-13 NMR Chemical Shift Tensors. ACS Central Science, 2017, 3, 759-768.	5.3	84
78	Aromatic C–H σ-Bond Activation by Ni ⁰ , Pd ⁰ , and Pt ⁰ Alkene Complexes: Concerted Oxidative Addition to Metal vs Ligand-to-Ligand H Transfer Mechanism. Organometallics, 2017, 36, 2761-2771.	1.1	84
79	The Grignard Reaction – Unraveling a Chemical Puzzle. Journal of the American Chemical Society, 2020, 142, 2984-2994.	6.6	84
80	Counter-ion effects switch ligand binding from C-2 to C-5 in kinetic carbenes formed from an imidazolium salt and IrH5(PPh3)2. Chemical Communications, 2002, , 2580-2581.	2.2	82
81	Cp* Iridium Precatalysts for Selective C–H Oxidation via Direct Oxygen Insertion: A Joint Experimental/Computational Study. ACS Catalysis, 2012, 2, 208-218.	5.5	82
82	New Access to Vinylidenes from Ruthenium Polyhydrides. Organometallics, 1997, 16, 2227-2229.	1.1	81
83	Oxo vs Imido Alkylidene d ⁰ -Metal Species: How and Why Do They Differ in Structure, Activity, and Efficiency in Alkene Metathesis?. Organometallics, 2012, 31, 6812-6822.	1.1	81
84	Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis. Journal of the American Chemical Society, 2017, 139, 17597-17607.	6.6	80
85	Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds. Accounts of Chemical Research, 2019, 52, 2278-2289.	7.6	80
86	OsH5(PMe2Ph)3+: Structure, Reactivity, and Its Use as a Catalyst Precursor for Olefin Hydrogenation and Hydroformylation. Inorganic Chemistry, 1994, 33, 4966-4976.	1.9	79
87	Reactions of Monomeric [1,2,4-(Me3C)3C5H2]2CeH and CO with or without H2:Â An Experimental and Computational Study. Journal of the American Chemical Society, 2007, 129, 2529-2541.	6.6	79
88	Synthesis and properties of [(.etaC5H5)Re(NO)(PPh3)(:CHC6H5)]+PF6-: a benzylidene complex that is formed by a stereospecific .alphahydride abstraction, exists as two geometric isomers, and undergoes stereospecific nucleophilic attack. Journal of the American Chemical Society, 1982, 104, 4865-4878.	6.6	78
89	Distinct structures for ruthenium and osmium hydrido halides: Os(H)3X(PiPr3)2 (X = Cl, Br, I) are nonoctahedral classical trihydrides with exchange coupling. Journal of the American Chemical Society, 1994, 116, 2685-2686.	6.6	78
90	An .eta.4-benzene species mediates acetylene cyclotrimerization. Journal of the American Chemical Society, 1991, 113, 5127-5129.	6.6	77

#	Article	IF	CITATIONS
91	RuX(CO)(NO)L2and Ru(CO)(NO)L2+:Â Ru(0) or Ru(II) or In Between?. Journal of the American Chemical Society, 1997, 119, 8642-8651.	6.6	77
92	Double Geminal Câ^'H Activation and Reversible α-Elimination in 2-Aminopyridine Iridium(III) Complexes:Â The Role of Hydrides and Solvent in Flattening the Free Energy Surface. Journal of the American Chemical Society, 2004, 126, 8795-8804.	6.6	77
93	Structure, spectroscopic and electronic properties of a well defined silica supported olefin metathesis catalyst, [(î€,SiO)Re(î€,CR)(HR)(CH2R)], through DFT periodic calculations: silica is just a large siloxy ligand. New Journal of Chemistry, 2006, 30, 842-850.	1.4	77
94	Preparation, x-ray molecular structure, and electronic structure of the first 16-electron ruthenium dihydrogen complexes RuH(H2)X(PCy3)2. Journal of the American Chemical Society, 1991, 113, 2314-2316.	6.6	76
95	A DFT Study of SiH4 Activation by Cp2LnH. Inorganic Chemistry, 2002, 41, 4355-4362.	1.9	75
96	Reactions of New Osmiumâ ''Dihydride Complexes with Terminal Alkynes:Â Metallacyclopropene versus Metalâ ''Carbyne. Influence of the Alkyne Substituent. Organometallics, 1999, 18, 4949-4959.	1.1	74
97	DFT study of CH4 activation by d0 Cl2LnZ (Z = H, CH3) complexes. Dalton Transactions RSC, 2002, , 534-539.	2.3	74
98	Reactivity of the molecular hydrogen complex [IrH4(PMe2Ph)3]BF4 towards olefins. The origin of stereochemical rigidity of M(PR3)3(olefin)2 species. Journal of the American Chemical Society, 1990, 112, 855-863.	6.6	73
99	Geometrically Distorted and Redox-Active Organometallic Iridium Complexes Containing Biphenyl-2,2'-diyl. Organometallics, 1995, 14, 1168-1175.	1.1	73
100	Validation of the Mâ^'C/Hâ^'C Bond Enthalpy Relationship through Application of Density Functional Theory. Journal of the American Chemical Society, 2006, 128, 8350-8357.	6.6	73
101	The structure of d0 ML6 complexes. Inorganic Chemistry, 1989, 28, 1611-1613.	1.9	71
102	DFT studies of some structures and reactions of lanthanides complexes. Journal of Organometallic Chemistry, 2002, 647, 190-197.	0.8	71
103	Mono-, Di-, and Trianionic β-Diketiminato Ligands: A Computational Study and the Synthesis and Structure of [(YbL)3(THF)], L = [{N(SiMe3)C(Ph)}2CH]. Journal of the American Chemical Society, 2003, 125, 10790-10791.	6.6	71
104	Modulation of reactivity and stereochemistry of substrate binding by the group X in RuHX(CO)(P-tert-Bu2Me)2. Inorganic Chemistry, 1993, 32, 5490-5501.	1.9	69
105	Characterization and Reactivity of an Unprecedented Unsaturated Zero-Valent Ruthenium Species:Â Isolable, Yet Highly Reactive. Journal of the American Chemical Society, 1996, 118, 10189-10199.	6.6	69
106	lon pairing effects in intramolecular heterolytic H2 activation in an Ir(iii) complex: a combined theoretical/experimental study. New Journal of Chemistry, 2003, 27, 80-87.	1.4	69
107	Heterolytic dihydrogen activation in an iridium complex with a pendant basic group. Chemical Communications, 1999, , 297-298.	2.2	68
108	The rebound mechanism in catalytic C–H oxidation by MnO(tpp)Cl from DFT studies: electronic nature of the active species. Chemical Communications, 2008, , 744-746.	2.2	68

#	Article	IF	CITATIONS
109	Deviation from the ideal octahedral field vs. alkyl distortion in d0 metal-alkyl complexes: a MO study. Organometallics, 1986, 5, 1457-1464.	1.1	67
110	Theoretical analysis of bonding in monomeric and polymeric C5H5M compounds. Organometallics, 1984, 3, 759-764.	1.1	66
111	Interaction between d6 ML5 metal fragments and hydrogen: .eta.2-H2 vs. dihydride structure. Journal of the American Chemical Society, 1986, 108, 6587-6592.	6.6	65
112	Theoretical Studies on the Metathesis Processes, [Tp(PH3)MR(2-HCH3)] → [Tp(PH3)M(CH3)(2-HF	≀)] (M=Fe,) 1.7) ŢĻETQq0 0
113	Remote functionalization of hydrocarbons with reversibility enhanced stereocontrol. Chemical Science, 2015, 6, 2770-2776.	3.7	65
114	Are Strong Gold-Gold Interactions Possible in Main Group XnA(AuPR3)m Molecules?. Inorganic Chemistry, 1994, 33, 3261-3268.	1.9	63
115	Mechanistic Studies of the Facile Four-Electron Reduction of Azobenzene at a Single Tungsten Metal Center. Journal of the American Chemical Society, 1996, 118, 2762-2763.	6.6	63
116	R-Group reversal of isomer stability for RuH(X)L2(CCHR) vs. Ru(X)L2(CCH2R): access to four-coordinate ruthenium carbenes and carbynes. New Journal of Chemistry, 2000, 24, 925-927.	1.4	63
117	How Solvent Dynamics Controls the Schlenk Equilibrium of Grignard Reagents: A Computational Study of CH ₃ MgCl in Tetrahydrofuran. Journal of Physical Chemistry B, 2017, 121, 4226-4237.	1.2	63
118	The Mechanism of Acetylene Cyclotrimerization Catalyzed by the fac-IrP3+ Fragment: The Relationship between Fluxionality and Catalysis. Organometallics, 1994, 13, 2010-2023.	1.1	62
119	Cerium masquerading as a Group 4 element: synthesis, structure and computational characterisation of [CeCl{N(SiMe3)2}3]. Chemical Communications, 2001, , 1560-1561.	2.2	62
120	tert-Butyl Is Superior to Phenyl as an Agostic Donor to 14-Electron Ir(III). Journal of the American Chemical Society, 1997, 119, 9069-9070.	6.6	61
121	Isolable, Unsaturated Ru(0) in Ru(CO)2(PtBu2Me)2: Not Isostructural with Rh(I) in Rh(CO)2(PR3)2+. Journal of the American Chemical Society, 1995, 117, 8869-8870.	6.6	59
122	A 14-Electron Ruthenium(II) Hydride, [RuH(CO)(PtBu2Me)2]BArâ€~4(Arâ€~ = 3,5-(C6H3)(CF3)2): Synthesis, Structure, and Reactivity toward Alkenes and Oxygen Ligands. Organometallics, 2000, 19, 2281-2290.	1.1	59
123	Equilibria between α- and β-Agostic Stabilized Rotamers of Secondary Alkyl Niobium Complexes. Journal of the American Chemical Society, 2001, 123, 6000-6013.	6.6	59
124	Some structural and electronic properties of MX3(M = Ln, Sc, Y, Ti+, Zr+, Hf+; X = H, Me, Hal, N DFT calculations. Faraday Discussions, 2003, 124, 25-39.	H2) from 1.6	59
125	Understanding Structural and Dynamic Properties of Well-Defined Rhenium-Based Olefin Metathesis Catalysts, Re(â‹®CR)(CHR)(X)(Y), from DFT and QM/MM Calculations. Organometallics, 2005, 24, 1586-1597.	1.1	59
126	The Bond between CO and Cp′ ₃ U in Cp′ ₃ U(CO) Involves Back-bonding from the Cp′ ₃ U(Ligand-Based Orbitals of π-Symmetry, where Cp′ Represents a Substituted Cyclopentadienyl Ligand. Organometallics, 2009, 28, 3629-3635.	1.1	59

#	Article	IF	CITATIONS
127	CO-Induced C(sp2)/C(sp) Coupling on Ru and Os:Â A Comparative Study. Organometallics, 1998, 17, 4700-4706.	1.1	58
128	DFT calculations of d0M(NR)(CHtBu)(X)(Y) (M = Mo, W; R = CPh3, 2,6-iPr–C6H3; X and Y = CH2tBu, OtBu,) T Transactions, 2006, , 3077-3087.	j ETQq0 0 1.6	0 rgBT /Overlo 58
129	Generation and Structural Characterization of a Gold(III) Alkene Complex. Angewandte Chemie - International Edition, 2013, 52, 1660-1663.	7.2	58
130	Geminal dehydrogenation of ether and amine C(sp3)H2 groups by electron-rich Ru(ii) and OsElectronic supplementary information (ESI) available: crystallographic data, fractional coordinates and isotropic thermal parameters, anisotropic thermal parameters, and bond distances and angles. See http://www.rsc.org/suppdata/nj/b2/b200168n/. New Journal of Chemistry, 2002, 26, 687-700.	1.4	57
131	Orbital Analysis of Carbonâ€13 Chemical Shift Tensors Reveals Patterns to Distinguish Fischer and Schrock Carbenes. Angewandte Chemie - International Edition, 2017, 56, 10127-10131.	7.2	57
132	A comprehensive view of M–H addition across the RCî€,CH bond: frustration culminating in ultimate union. New Journal of Chemistry, 2001, 25, 1244-1255.	1.4	56
133	Metallacyclobutanes from Schrock-Type d ⁰ Metal Alkylidene Catalysts: Structural Preferences and Consequences in Alkene Metathesis. Organometallics, 2015, 34, 1668-1680.	1.1	55
134	Importance of palladium–carbon bond energies in direct arylation of polyfluorinated benzenes. Dalton Transactions, 2010, 39, 10510.	1.6	54
135	cis–trans Isomerisation of CpRe(CO)2(H)(ArF) (ArF= C6FnH5â^'n; n = 0–5) is the rate determining step in C–H activation of fluoroarenes: a DFT study. Dalton Transactions, 2003, , 4065-4074.	1.6	53
136	The Key Role of the Hemiaminal Intermediate in the Iron-Catalyzed Deaminative Hydrogenation of Amides. ACS Catalysis, 2018, 8, 8751-8762.	5.5	53
137	Electronic origin of the thermochromic effect in 2,2',5,5'-tetramethylbistibole. Journal of the American Chemical Society, 1982, 104, 3876-3879.	6.6	51
138	Competition between Steric and Electronic Control of Structure in Ru(CO)2L2Lâ€~ Complexes. Organometallics, 1997, 16, 1979-1993.	1.1	51
139	[Ru(Ph)(CO)(PtBu2Me)2]+: A Unique 14-Electron Ru11 Complex with Two Agostic Interactions. Angewandte Chemie International Edition in English, 1997, 36, 2004-2006.	4.4	51
140	Structural and Dynamic Properties of OsH2X2L2 (X = Cl, Br, I; L = PiPr3) Complexes: Interconversion between Remarkable Non-Octahedral Isomers. Journal of the American Chemical Society, 1995, 117, 281-292.	6.6	50
141	Multiple structural variants of LnCuI(.muX)2CuILn (n = 1, 2). Influence of halide on a "soft" potential energy surface. Inorganic Chemistry, 1992, 31, 3306-3312.	1.9	49
142	Carbene Complexes from Olefins, Using RuHCl(PiPr3)2. Influence of the Olefin Substituent. Journal of the American Chemical Society, 1998, 120, 9388-9389.	6.6	49
143	Cationic Methyl Complexes of the Rare-Earth Metals: An Experimental and Computational Study on Synthesis, Structure, and Reactivity. Inorganic Chemistry, 2008, 47, 9265-9278.	1.9	49
144	Solid-State and Solution Structures of[{NW(OC(CH3)2CF3)3}3] and Factors Favoring the Metathesis of CN and WW Triple Bonds in Reactions Involving Organic Nitriles and Ditungsten Hexaalkoxides. Angewandte Chemie International Edition in English, 1995, 34, 110-112.	4.4	48

#	Article	IF	CITATIONS
145	DFT studies of the methyl exchange reaction between Cp2M–CH3or Cp*2M–CH3(Cp = C5H5, Cp* = C5Me5,) 3052-3057.	Tj ETQq1 1.6	1 0.7843 47
146	Metal alkyls programmed to generate metal alkylidenes by α-H abstraction: prognosis from NMR chemical shift. Chemical Science, 2018, 9, 1912-1918.	3.7	47
147	Dynamics on an ab Initio Surface for Calculating JHH NMR Exchange Coupling. The Case of OsH3X(PH3)2. Journal of the American Chemical Society, 1995, 117, 1797-1799.	6.6	46
148	DFT modeling of ligands in lanthanide chemistry: Is Ln[N(SiH3)2]3 a model for Ln[N(SiMe3)2]3?. New Journal of Chemistry, 2001, 25, 255-258.	1.4	46
149	π-Bond Character in Metal–Alkyl Compounds for C–H Activation: How, When, and Why?. Journal of the American Chemical Society, 2019, 141, 648-656.	6.6	46
150	On coupling carbenes and carbynes. Journal of the American Chemical Society, 1982, 104, 632-634.	6.6	45
151	A novel coordination mode for oxygen: preparation and properties of (NBun4)2[V4O(edt)2Cl8] containing a square planar oxide bridge. Journal of the American Chemical Society, 1989, 111, 8027-8029.	6.6	45
152	Redox-active organometallic Ir complexes containing biphenyl-2,2′-diyl. Journal of the Chemical Society Chemical Communications, 1993, .	2.0	45
153	A theoretical study of [M(PH3)4] (Mâ€=â€Ru or Fe), models for the highly reactive d8 intermediates [M(dmpe)2] (dmpeâ€=â€Me2PCH2CH2PMe2). Zero activation energies for addition of CO and oxidative addition of H2â€S‡. Journal of the Chemical Society Dalton Transactions, 1998, , 291-300.	1.1	45
154	C–H oxidation by hydroxo manganese(v) porphyrins: a DFT study. Chemical Communications, 2009, , 1772.	2.2	45
155	Structural Distortions in Six-Coordinate Adducts of Niobium(V) and Tantalum(V). Inorganic Chemistry, 1997, 36, 3623-3631.	1.9	44
156	Vinyl Câ^'F Cleavage by Os(H)3Cl(PiPr3)2. Inorganic Chemistry, 2002, 41, 6440-6449.	1.9	43
157	Are the Carbon Monoxide Complexes of Cp2M (M = Ca, Eu, or Yb) Carbon or Oxygen Bonded? An Answer from DFT Calculations. Journal of the American Chemical Society, 2002, 124, 5614-5615.	6.6	43
158	Hydrogen for X-Group Exchange in CH ₃ X (X = Cl, Br, I, OMe, and NMe ₂) by Monomeric [1,2,4-(Me ₃ C) ₃ C ₅ H ₂] ₂ CeH: Experimental and Computational Support for a Carbenoid Mechanism. Organometallics, 2009, 28, 3173-3185.	1.1	43
159	Why Is .betaMe Elimination Only Observed in d0 Early-Transition-Metal Complexes? An Organometallic Hyperconjugation Effect with Consequences for the Termination Step in Ziegler-Natta Catalysis. Organometallics, 1994, 13, 1049-1051.	1.1	42
160	Quantum Exchange Coupling:Â A Hypersensitive Indicator of Weak Interactions. Journal of the American Chemical Society, 1997, 119, 10153-10169.	6.6	42
161	Is π-donation the only way? Unprecedented unsaturated Ru(II) species devoid of π-donor ligands. Inorganica Chimica Acta, 1997, 259, 5-26.	1.2	42
162	Nitrido Dimers and Trimers of Tungsten Supported by tBuMe2SiO and CF3Me2CO Ligands, Respectively. Factors Influencing the Reductive Cleavage of Nitriles by Tungsten-Tungsten Triple Bonds and An Analysis of the Structure of the Cyclotrimer. Chemistry - A European Journal, 1999, 5, 2318-2326.	1.7	42

#	Article	IF	CITATIONS
163	The reaction of the unsaturated rhenium fragment {Re(η5-C5Me5)(CO)2} with 1,4-difluorobenzene. Thermal intramolecular conversion of a rhenium (difluorophenyl)(hydride) to Re(η2-C6H4F2) and a [1,4]-metallotropic shift. Dalton Transactions RSC, 2001, , 1452-1461.	2.3	42
164	Mechanistic investigation of vinylic carbon–fluorine bond activation of perfluorinated cycloalkenes using Cp*2ZrH2 and Cp*2ZrHF. Journal of Fluorine Chemistry, 2010, 131, 1122-1132.	0.9	42
165	Hypercoordinated XHn+1 radicals for first- and second-row atoms. A valence bond analysis. Journal of the American Chemical Society, 1989, 111, 5623-5631.	6.6	41
166	NMR chemical shift analysis decodes olefin oligo- and polymerization activity of d ⁰ group 4 metal complexes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5867-E5876.	3.3	40
167	Structural variants of tetranuclear L4Cu4X4. Influence of L on the coordination mode of copper(I). Inorganic Chemistry, 1992, 31, 5389-5394.	1.9	39
168	Characterization of PtH3(PtBu3)2+ as the First Dihydrogen Complex of d8, Pt(II). Journal of the American Chemical Society, 1994, 116, 7409-7410.	6.6	39
169	Interplay of Weak Interactions:Â An Iridium(III) System with an Agostictert-Butyl but a Nonagostic Isopropyl Group. Organometallics, 2002, 21, 575-580.	1.1	39
170	Computational Studies Explain the Importance of Two Different Substituents on the Chelating Bis(amido) Ligand for Transfer Hydrogenation by Bifunctional Cp*Rh(III) Catalysts. Organometallics, 2014, 33, 3433-3442.	1.1	39
171	Facile olefin hydrogenation with an osmium dihydrogen complex. Organometallics, 1989, 8, 2073-2074.	1.1	37
172	Chemoselectivity in σ bond activation by lanthanocene complexes from a DFT perspective: reactions of Cp2LnR (R = CH3, H, SiH3) with SiH4and CH3–SiH3. New Journal of Chemistry, 2007, 31, 549-555.	1.4	37
173	An Unusual Example of Hypervalent Silicon: A Fiveâ€Coordinate Silyl Group Bridging Two Palladium or Nickel Centers through a Nonsymmetrical Fourâ€Center Twoâ€Electron Bond. Angewandte Chemie - International Edition, 2014, 53, 1103-1108.	7.2	37
174	Atom economic synthesis of amides via transition metal catalyzed rearrangement of oxaziridines. Green Chemistry, 2007, 9, 976.	4.6	36
175	Simple prediction of regiospecificity in Diels–Alder reactions. Challenge, 1971, .	0.4	35
176	A comparative study of olefin or acetylene insertion into Ruââ,¬â€œH or Osââ,¬â€œH of MHCl(CO)(phosphine New Journal of Chemistry, 2001, 25, 1382-1388.	²⁾² 1.4	35
177	DFT calculations of NMR JC–H coupling constants: An additional tool to characterize the α-agostic interaction in high oxidation state M-alkylidene complexes (M=Re, Mo and Ta). Polyhedron, 2006, 25, 339-348.	1.0	35
178	Synthesis and structure of "16-electron―rhodium(iii) catalysts for transfer hydrogenation of a cyclic imine: mechanistic implications. Chemical Communications, 2009, , 6801.	2.2	35
179	Synthesis, structure, and reductive elimination in the series Tp′Rh(PR3)(ArF)H; Determination of rhodium–carbon bond energies of fluoroaryl substituents. Dalton Transactions, 2010, 39, 10495.	1.6	35
180	Successive Heterolytic Cleavages of H ₂ Achieve N ₂ Splitting on Silica-Supported Tantalum Hydrides: A DFT Proposed Mechanism. Inorganic Chemistry, 2012, 51, 7237-7249.	1.9	35

#	Article	IF	CITATIONS
181	1,2-Hydrogen Migration to a Saturated Ruthenium Complex via Reversal of Electronic Properties for Tin in a Stannylene-to-Metallostannylene Conversion. Journal of the American Chemical Society, 2014, 136, 13991-13994.	6.6	35
182	A theoretical study of the formation and reactivity of substituted cyclohexadienyliron complexes. The structures and reactivities of tricarbonyl(2-methoxycyclohexadienyl)iron cation and tricarbonyl(1-methyl-4-methoxycyclohexadienyl)iron cation. Organometallics, 1984, 3, 1150-1157.	1.1	34
183	Site Preference Energetics, Fluxionality, and Intramolecular Mâ^'H···Ĥâ^'N Hydrogen Bonding in a Dodecahedral Transition Metal Polyhydrideâ€. Inorganic Chemistry, 1997, 36, 5505-5511.	1.9	34
184	Different van der Waals radii for organic and inorganic halogen atoms: a significant improvement in IMOMM performance. Theoretical Chemistry Accounts, 1997, 96, 146-150.	0.5	34
185	Opposing steric and electronic contributions in OsCl2H2(PPr3i)2. A theoretical study of an unusual structure. New Journal of Chemistry, 1998, 22, 5-9.	1.4	34
186	DFT Investigation of the Catalytic Hydromethylation of α-Olefins by Metallocenes. 1. Differences between Scandium and Lutetium in Propene Hydromethylation. Organometallics, 2006, 25, 5699-5708.	1.1	34
187	The reaction of bis(1,2,4-tri-t-butylcyclopentadienyl)ceriumbenzyl, Cpâ€22CeCH2Ph, with methylhalides: a metathesis reaction that does not proceed by a metathesis transition state. Dalton Transactions, 2010, 39, 6648.	1.6	34
188	Theoretical study of borohydride addition to formaldehyde. A one-step, nonsynchronous transition state. Journal of Organic Chemistry, 1982, 47, 2886-2891.	1.7	33
189	The origin of structural variety of alkyne complexes of d8 metals. An example of structural isomerism. Polyhedron, 1990, 9, 1867-1881.	1.0	33
190	Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation between theory and experiment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6939-6944.	3.3	33
191	Understanding reactivity trends by structural and theoretical studies of distortions in ground-state reagents. Organometallics, 1991, 10, 3062-3069.	1.1	32
192	Why Nickel(II) Binds CO Best in Trigonal Bipyramidal and Square Pyramidal Geometries and Possible Consequences for CO Dehydrogenase. Inorganic Chemistry, 1994, 33, 3616-3618.	1.9	32
193	Synthesis, Unusual Trigonal Prismatic Geometry, and Theoretical Study of the Homoleptic Tris-(2,2†-biphosphinine) Complexes of Chromium, Molybdenum, and Tungsten. Inorganic Chemistry, 1998, 37, 3154-3158.	1.9	32
194	Bond Activations of PhSiH ₃ by Cp ₂ SmH: A Mechanistic Investigation by the DFT Method. Organometallics, 2009, 28, 3767-3775.	1.1	32
195	Theoretical study of the conformation of cis carbene-olefin-transition metal complexes: back-donation vs. ligand-ligand interaction. Journal of the American Chemical Society, 1986, 108, 2173-2179.	6.6	31
196	Modeling C5H5with Atoms or Effective Group Potential in Lanthanide Complexes:Â Isolobality Not the Determining Factor. Journal of Physical Chemistry A, 2002, 106, 1797-1801.	1.1	31
197	Deciphering Selectivity in Organic Reactions: A Multifaceted Problem. Accounts of Chemical Research, 2016, 49, 1070-1078.	7.6	31
198	[Cp''Co(P4){(Cp''Co)2(.muCO)}] (Cp'' = .eta.5-C5H3tBu2): A Complex with a P4 Unit on the Way to a P1 and a P3 Ligand. Inorganic Chemistry, 1995, 34, 3117-3119.	1.9	29

#	Article	IF	CITATIONS
199	Observing and modelling energetically close α- and β-carbon–hydrogen agostic interactions in an isopropyl tris(pyrazolyl)boratoniobium complex. Chemical Communications, 1998, , 2011-2012.	2.2	29
200	Cyclometalated N-Heterocyclic Carbene Complexes of Ruthenium for Access to Electron-Rich Silylene Complexes That Bind the Lewis Acids CuOTf and AgOTf. Journal of the American Chemical Society, 2014, 136, 11473-11482.	6.6	29
201	35Cl pure quadrupole resonance in acetylated glycopyranosyl chlorides. Relation between chlorine nuclear quadrupole coupling constant and molecular conformation. Journal of Chemical Physics, 1973, 58, 5579-5583.	1.2	28
202	Theoretical studies of SN2 transition states, the alpha effect. Tetrahedron Letters, 1982, 23, 615-618.	0.7	28
203	Theoretical analysis of radical reactions: on the anomalous behavior of methyl toward fluoro-substituted olefins. The Journal of Physical Chemistry, 1985, 89, 4856-4861.	2.9	28
204	An extremely low barrier to rotation of dihydrogen in the iridium complex IrClH2(.eta.2-H2)(PiPr3)2. Journal of the American Chemical Society, 1993, 115, 11056-11057.	6.6	28
205	16-Electron Ruthenium(0) Complexes Containing the Ru(NO)L2+Substructure:Â Planar RuCH3(NO)L2vs Sawhorse [Ru(NO)(CC(SiMe3)2)L2]+. Organometallics, 2000, 19, 1967-1972.	1.1	28
206	Silyl, Hydrido-Silylene, or Other Bonding Modes:Â Some Unusual Structures of [(dhpe)Pt(SiHR2)]+(dhpe) Tj ETQqQ Calculations. Inorganic Chemistry, 2002, 41, 7105-7112.	0 0 0 rgBT 1.9	/Overlock 2 28
207	Bonding of H2, N2, Ethylene, and Acetylene to Bivalent Lanthanide Metallocenes:Â Trends from DFT Calculations on Cp2M and Cp*2M (M = Sm, Eu, Yb) and Experiments with Cp*2Yb. Organometallics, 2003, 22, 5447-5453.	1.1	28
208	CF4defluorination by Cp2Ln–H: a DFT study. Dalton Transactions, 2003, , 4313-4318.	1.6	28
209	Theoretical analysis of the addition of nucleophiles to (.eta.4-diene)MLn complexes. Organometallics, 1987, 6, 1845-1849.	1.1	27
210	Isomeric Hydrido/Vinylidene, MH(halide)(CCH2)L2, and Ethylidyne, M(halide)(Câ^'CH3)L2(M = Os, Ru; L =) Tj ETQc	100 rgB	T /Overlock 27
211	How hydrogen bonding affects ligand binding and fluxionality in transition metal complexes: a DFT study on interligand hydrogen bonds involving HF and H2O. New Journal of Chemistry, 2001, 25, 66-72.	1.4	27
212	Molecular recognition in Mn-catalyzed C–H oxidation. Reaction mechanism and origin of selectivity from a DFT perspective. Dalton Transactions, 2009, , 5989.	1.6	27
213	Zirconocene-Mediated Selective C–C Bond Cleavage of Strained Carbocycles: Scope and Mechanism. Journal of Organic Chemistry, 2018, 83, 3497-3515.	1.7	27
214	Thermochromic effect in distibines. The role of conjugation. Organometallics, 1987, 6, 1185-1188.	1.1	26
215	Ligand dependent nature of three possible shapes for a d6 pentacoordinated complex. Polyhedron, 1988, 7, 405-407.	1.0	26
216	Influence of a cis hydride on a coordinated molecular hydrogen ligand cis hydride, Ab initio calculations. Inorganic Chemistry, 1992, 31, 3344-3345.	1.9	26

#	Article	IF	CITATIONS
217	Phosphine Dissociation Mediates Câ^'H Cleavage of Fluoroarenes by OsH(C6H5)(CO)(PtBu2Me)2. Journal of the American Chemical Society, 1999, 121, 10895-10907.	6.6	26
218	Theoretical study of oxyhemocyanin active site: A possible insight on the first step of phenol oxidation by tyrosinase. Archives of Biochemistry and Biophysics, 1992, 296, 247-255.	1.4	25
219	Unifying the mechanisms for alkane dehydrogenation and alkene H/D exchange with [IrH2(O2CCF3)(PAr3)2]: the key role of CF3CO2 in the "sticky'' alkane route. New Journal of Chemistry, 2001, 25, 1121-1131.	1.4	25
220	Electronic control of the stereochemistry of electrophilic and nucleophilic attack on double bonds in 6-membered rings. Tetrahedron, 1979, 35, 225-228.	1.0	24
221	Five-coordinate bent metallocenes. Structure and dynamics of bis(.etacyclopentadienyl)chloro(N,N-dialkyldithiocarbamato)zirconium(IV) complexes. Inorganic Chemistry, 1983, 22, 759-770.	1.9	24
222	A double ionic mechanism for the Chapman-like rearrangement of imino-ethers to N-alkylmides, in the solid state or in the melt. Theoretical and experimental evidence. Journal of the Chemical Society Chemical Communications, 1992, .	2.0	24
223	Modelling Me5C5for reactivity studies in (η5-C5Me5)2Ln–R: full DFT and QM/MM approaches. New Journal of Chemistry, 2004, 28, 1255-1259.	1.4	24
224	Bridging Silyl Groups in σ-Bond Metathesis and [1,2]-Shifts. Experimental and Computational Study of the Reaction between Cerium Metallocenes and MeOSiMe ₃ . Organometallics, 2010, 29, 5103-5110.	1.1	24
225	Three- and four-co-ordinate copper(I) complexes: 1:1 and 1:2 1-cyanoguanidine–copper(I) halide adducts. Journal of the Chemical Society Dalton Transactions, 1994, , 1935-1942.	1.1	23
226	Facile C(sp2)/OR Bond Cleavage by Ru or Os. Inorganic Chemistry, 2001, 40, 6610-6621.	1.9	23
227	Alkyne hydrogenation by a dihydrogen complex: synthesis and structure of an unusual iridium-butyne complex. Journal of the American Chemical Society, 1989, 111, 2346-2347.	6.6	22
228	Eine ungewöhnliche intermolekulare Dreizentrenâ€Nâ€H ⃛H ₂ Reâ€Wasserstoffbrücke zwische [ReH ₅ (PPh ₃) ₃] und Indol im Kristall. Angewandte Chemie, 1995, 107, 2711-2713.	n 1.6	22
229	Breaking an electronically preferred symmetry by steric effects in a series of [Ir(biph)X(QR3)2] compounds (X=Cl or I, Q=P or As). New Journal of Chemistry, 1998, 22, 1493-1498.	1.4	22
230	Facile C(sp2)/O2CR bond cleavage by Ru or Os. New Journal of Chemistry, 2003, 27, 1451-1462.	1.4	22
231	A theoretical study of models for X2Y2 Zintl ions. Journal of the American Chemical Society, 1989, 111, 8105-8111.	6.6	21
232	[K([18]crown-6)]+[Mo4(μ4-H)(OCH2tBu)12]â^', the First Alkoxidohydrido Cluster of Molybdenum, Evidence for a Rare, if not the First, Example of aμ4-Hydride. Angewandte Chemie International Edition in English, 1994, 33, 191-193.	4.4	21
233	Tungsten(6+) Tris(pinacolate): Structure and Comments on the Preference for an Octahedral Geometry Relative to Trigonal Prismatic (D3h) for a d0 Complex in the Presence of Strong .piDonor Ligands. Inorganic Chemistry, 1994, 33, 812-815.	1.9	21
234	Four-Electron Reduction of Diazo Compounds at a Single Tungsten Metal Center:Â A Theoretical Study of the Mechanism. Journal of the American Chemical Society, 1998, 120, 6598-6602.	6.6	21

#	Article	IF	CITATIONS
235	Comparison of α CH and CF activation in alkyl transition metal complexes: a DFT and CASSCF study. Molecular Physics, 2002, 100, 533-540.	0.8	21
236	Reduction of ketones by sodium borohydride in the absence of protic solvents. Inter versus intramolecular mechanism. Tetrahedron Letters, 1983, 24, 1015-1018.	0.7	20
237	Theoretical study of the reactivity of phosphonium and sulfonium ylides with carbonyl groups. Journal of the American Chemical Society, 1984, 106, 6117-6119.	6.6	20
238	Long-range interaction between nonbonded hydrides. Attractive in the case of transition metals?. Journal of the American Chemical Society, 1990, 112, 7203-7207.	6.6	20
239	16-Electron, non-Ï€-stabilized Ir(H)2(H2)(PBu2tPh)2+ and 18-electron Ir(H)2(H2)2(PBu2tPh)2+: fluxionality and H/D exchange as independent processes. New Journal of Chemistry, 1998, 22, 307-310.	1.4	20
240	Influence of Ancillary Ligands on the Kinetics and the Thermodynamics of H2Addition to IrXH2(PR3)2(X) Tj ETQq0 Journal of Physical Chemistry A, 1998, 102, 3592-3598.	0 0 rgBT 1.1	/Overlock 10 20
241	Solution and Solid-State Structure of Ru(CO)2(Bu2PtC2H4PtBu2):Â Square Planar and Monomeric?. Journal of the American Chemical Society, 1999, 121, 3242-3243.	6.6	20
242	Stereochemical Nonrigidity of a Chiral Rhodium Boryl Hydride Complex: A σ-Borane Complex as Transition State for Isomerization. Journal of the American Chemical Society, 2008, 130, 4375-4385.	6.6	20
243	Coordination and insertion of alkenes and alkynes in Au ^{III} complexes: nature of the intermediates from a computational perspective. Dalton Transactions, 2016, 45, 5504-5513.	1.6	20
244	An oscillating C22? unit inside a copper rectangleElectronic supplementary information (ESI) available: NMR spectra and computational details. See http://www.rsc.org/suppdata/cc/b3/b301842c/. Chemical Communications, 2003, , 1260.	2.2	19
245	Two [1,2,4-(Me ₃ C) ₃ C ₅ H ₂] ₂ CeH Molecules are Involved in Hydrogenation of Pyridine to Piperidine as Shown by Experiments and Computations. Inorganic Chemistry, 2014, 53, 6361-6373.	1.9	19
246	Metal alkoxides. Models for metal oxides. 18. Structure, bonding and dynamic behavior of bis(.eta.2-ethylene)hexakis(neopentoxy)ditungsten. Studies of the reversible addition of carbon-carbon double bonds to a tungsten-tungsten triple bond. Journal of the American Chemical Society, 1992, 114, 8497-8509.	6.6	18
247	DFT Investigation of the Catalytic Hydromethylation of Olefins by Scandocenes. 2. Influence of the Ansa Ligand on Propene and Isobutene Hydromethylation. Organometallics, 2008, 27, 2252-2257.	1.1	18
248	Mechanistic Insights on the Stereoselective Nucleophilic 1,2-Addition to Sulfinyl Imines. Journal of Organic Chemistry, 2014, 79, 2514-2521.	1.7	18
249	Does the Mode of Dioxygen Binding to Dinuclear Copper Complexes Depend on the Spectator Nitrogen-Containing Ligands? An ab Initio Theoretical Study. Inorganic Chemistry, 1997, 36, 3455-3460.	1.9	17
250	Fate of CH2CHE (E = H, OMe) in the Presence of Unsaturated Ru(X)(H)L2q+(X = Cl,q= 0; X = CO,q= 1):Â Highly Sensitive to X and E. Organometallics, 2000, 19, 2291-2298.	1.1	17
251	Unsaturated Ru(0) Species with a Constrained Bis-Phosphine Ligand:  [Ru(CO)2(tBu2PCH2CH2PtBu2)]2. Comparison to [Ru(CO)2(PtBu2Me)2]. Inorganic Chemistry, 2000, 39, 3957-3962.	1.9	17
252	Intermolecular Câ^'H··O and Câ^'H···Ĩ€ Interactions in the Chloroform Solvate (CH3)3Siâ^'Câ‹®Câ^'Câ‹®Câ^'Si(OCH2CH2)3N·2CHCl3: Crystallographic, Spectroscopic, and DFT Studies. Organometallics, 2001, 20, 47-54.	1.1	17

#	Article	IF	CITATIONS
253	A NMR, X-ray, and DFT combined study on the regio-chemistry of nucleophilic addition to platinum(II) coordinated terminal olefins. Journal of Organometallic Chemistry, 2008, 693, 2819-2827.	0.8	17
254	Symmetrical Hydrogen Bonds in Iridium(III) Alkoxides with Relevance to Outer Sphere Hydrogen Transfer. Inorganic Chemistry, 2012, 51, 12313-12323.	1.9	17
255	Borate anion (B11H14-): a nido cage with no hydrogenhydrogen interaction. Journal of the American Chemical Society, 1993, 115, 7747-7751.	6.6	16
256	Unexpected Coexistence of Isomeric Forms and Unusual Structures of Ru(CO)2L3‗. Inorganic Chemistry, 1996, 35, 7468-7469.	1.9	16
257	18-Electron Os(X)(CHR)(Cl)(CO)L2 (X=H, Cl): not octahedral and metastable?. New Journal of Chemistry, 1999, 23, 495-498.	1.4	16
258	Lanthanide Complexes: Electronic Structure and H—H, C—H, and Si—H Bond Activation from a DFT Perspective. ACS Symposium Series, 2004, , 116-133.	0.5	16
259	Metal fragment isomerisation upon grafting a d2 ML4 perhydrocarbyl Os complex on a silica surface: origin and consequence. Dalton Transactions, 2009, , 5879.	1.6	16
260	An ab initio SCF + CI study of the SH3 and SF3 radicals. Chemical Physics Letters, 1986, 130, 419-422.	1.2	15
261	Conformation of hydrogen molecule on dinuclear complexes: attractive effect of a cis hydride. Inorganic Chemistry, 1990, 29, 3910-3914.	1.9	15
262	When Do Close B-B Contacts Imply a Bond, and When Not: The Case of Five-Vertex Boron-Containing Deltahedra?. Journal of the American Chemical Society, 1995, 117, 11939-11945.	6.6	15
263	Intermolecular Reî—,H·Hî—,X hydrogen bonding (X î—» N, C) involving ReH5(PPh3)3. Inorganica Chimica Acta, 1998, 280, 26-29.	1.2	15
264	Functionalization vs. β-elimination in alkane activation: a key role for 16-electron ML5 intermediates. New Journal of Chemistry, 2001, 25, 665-666.	1.4	15
265	Catalytic hydrosilylation of olefins with organolanthanides: a DFT study. Part I: Hydrosilylation of propene by SiH4. Dalton Transactions, 2010, 39, 10749.	1.6	15
266	What Makes a Good (Computed) Energy Profile?. Topics in Organometallic Chemistry, 2020, , 1-38.	0.7	15
267	Theoretical study of regioselectivity in nucleophilic addition to unsymmetrical cyclic anhydrides. Intrinsic reactivity and influence of the cation. Canadian Journal of Chemistry, 1981, 59, 2457-2462.	0.6	14
268	H/D Exchange on Silica-Grafted Tantalum(V) Imido Amido [(≡SiO)2Ta(V)(NH)(NH2)] Synthesized from Either Ammonia or Dinitrogen: IR and DFT Evidence for Heterolytic Splitting of D2. Topics in Catalysis, 2009, 52, 1482-1491.	1.3	14
269	Facile Interconversion of [Cp ₂ (Cl)Hf(SnH ₃)] and [Cp ₂ (Cl)Hf(I¼â€H)SnH ₂]: DFT Investigations of Hafnocene Stannyl Complexes as Masked Stannylenes. Angewandte Chemie - International Edition, 2010, 49, 1816-1819.	7.2	14
270	Selectivity in the C–H Activation Reaction of CH ₃ OSO ₂ CH ₃ with [1,2,4-(Me ₃ C) ₃ C ₅ H ₂] ₂ CeH or [1,2,4-(Me ₃ C) ₃ C ₅ H ₂][1,2-(Me ₃ C) ₂ To Choose or Not To Choose. Organometallics, 2012, 31, 870-881.	b> 1 11(Me<	sub>2

#	Article	IF	CITATIONS
271	Cleaving bonds in CH ₃ OSO ₂ CF ₃ with [1,2,4-(Me ₃ C) ₃ C ₅ H ₂] ₂ CeH; an experimental and computational study. New Journal of Chemistry, 2013, 37, 132-142.	1.4	14
272	Donor-Promoted 1,2-Hydrogen Migration from Silicon to a Saturated Ruthenium Center and Access to Silaoxiranyl and Silaiminyl Complexes. Journal of the American Chemical Society, 2015, 137, 9186-9194.	6.6	14
273	Hypothetical strain-free oligoradicals. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 5588-5592.	3.3	13
274	Preparation, X-ray crystal and electronic structure of the novel raft cluster [NbAuH2{C5H4(SiMe3)}2]3. Journal of the Chemical Society Chemical Communications, 1990, , 17.	2.0	13
275	Lâ€~ = CO vs Cl- Transposition:  Remarkable Consequences for the Product of (Lâ€~)â^'Ru(L)2â^'(H) and Vinyl Ether. Organometallics, 1999, 18, 5441-5443.	1.1	13
276	Nonclassical CHâ^'Ĩ€ Supramolecular Interactions in Artemisinic Acid Favor a Single Conformation, Yielding High Diastereoselectivity in the Reduction with Diazene. Journal of Organic Chemistry, 2014, 79, 5939-5947.	1.7	13
277	Modelling and Rationalizing Organometallic Chemistry with Computation: Where Are We?. Structure and Bonding, 2015, , 1-37.	1.0	13
278	Orbital Analysis of Carbonâ€13 Chemical Shift Tensors Reveals Patterns to Distinguish Fischer and Schrock Carbenes. Angewandte Chemie, 2017, 129, 10261-10265.	1.6	13
279	Regio- and stereoselectivity of chiral binaphthyl reductive aminoalkylation. Rotational conformation and electron distribution of alkali-metal biarylides. Journal of the American Chemical Society, 1977, 99, 2230-2235.	6.6	12
280	A mechanistic approach to MgCl ₂ supported stereospecific propene polymerization: A new model of active sites. Macromolecular Symposia, 1995, 89, 39-54.	0.4	12
281	DFT calculations of 29Si-NMR chemical shifts in Ru(ii) silyl complexes: Searching for trends and accurate values. Dalton Transactions, 2011, 40, 11321.	1.6	12
282	Catalytic Olefin Hydrosilations Mediated by Ruthenium η3-H2Si σ Complexes of Primary and Secondary Silanes. ACS Catalysis, 2018, 8, 11513-11523.	5.5	12
283	³¹ P Chemical Shifts in Ru(II) Phosphine Complexes. A Computational Study of the Influence of the Coordination Sphere. Inorganic Chemistry, 2020, 59, 17038-17048.	1.9	12
284	Synthesis, Xâ€ray and Electronic Structure of Trinickel Tetradecker Sandwich Complexes {(η ⁵ â€C ₅ H ₅)Ni[μ,η ⁵ â€(CR ¹) ₂ (BI Chemische Berichte, 1993, 126, 1587-1592.	₹œap>2<,	/sup>) <sub:< td=""></sub:<>
285	Silyl, Hydrido Silylene or Alternative Bonding Modes:Â The Many Possible Structures of [(C5H5)(PH3)IrX]+(X = SiHR2and SiR3; R = H, CH3, SiH3, and Cl). Organometallics, 2006, 25, 4748-4755.	1.1	11
286	Splitting a C–O bond in dialkylethers with bis(1,2,4-tri-tert-butylcyclopentadienyl)cerium hydride does not occur by a σ-bond metathesis pathway: a combined experimental and DFT computational study. New Journal of Chemistry, 2010, 34, 2189.	1.4	11
287	Catalytic hydrosilylation of olefins with organolanthanide complexes: A DFT study. Part II: Influence of the substitution on olefin and silane. Dalton Transactions, 2010, 39, 10757.	1.6	11
288	Heterolytic cleavage of ammonia N–H bond by bifunctional activation in silica-grafted single site Ta(V) imido amido surface complex. Importance of the outer sphere NH3 assistance. New Journal of Chemistry, 2011, 35, 1011.	1.4	11

#	Article	IF	CITATIONS
289	Experimental and DFT Computational Study of β-Me and β-H Elimination Coupled with Proton Transfer: From Amides to Enamides in Cp* ₂ MX (M = La, Ce). Organometallics, 2017, 36, 97-108.	1.1	11
290	Modelling the surface of amorphous dehydroxylated silica: the influence of the potential on the nature and density of defects. New Journal of Chemistry, 2018, 42, 1356-1367.	1.4	11
291	6-Methyl-6-boraspiro[2.5]octa-4,7-diene, a boron analog of the phenonium ion. Journal of Organic Chemistry, 1983, 48, 901-903.	1.7	10
292	Polymeric one-dimensional [CoXL2]n vs. dimeric [CoXL2]2. Theoretical analysis of the factors favoring each form. Inorganic Chemistry, 1983, 22, 2398-2401.	1.9	10
293	Molecular graphics investigation of the addition of nucleophiles to (η4-butadiene) M(CO)3 complexes (M = Fe, Co+). Computational and Theoretical Chemistry, 1992, 254, 343-357.	1.5	10
294	Struktur von [{NW(OC(CH ₃) ₂ 33333] im Kristall und in Lösung; Faktoren, die die Metathese von Câ€N―und Wâ€Wâ€Dreifachbindungen bei Reaktionen mit organischen Nitrilen und Diwolframhexaalkoxiden begünstigen. Angewandte Chemie, 1995, 107, 61-63.	1.6	10
295	Selectivity in C–Cl bond activation of dichloroarenes by photogenerated Cp*Re(CO)2: combined experimental and DFT studies. New Journal of Chemistry, 2005, 29, 226-231.	1.4	10
296	The mechanism of N-vinylindole formation via tandem imine formation and cycloisomerisation of o-ethynylanilines. Dalton Transactions, 2009, , 10296.	1.6	10
297	Electronic switching of ring orientation in cyclopentadienyl-bridged polymers. Inorganic Chemistry, 1984, 23, 2435-2440.	1.9	9
298	Valence bond analysis of hypervalent sulphur compounds. Journal of the Chemical Society Chemical Communications, 1986, , 301.	2.0	9
299	Polynuclear metal hydrido alkoxides. Preparation and characterization of Mo4(μ-H)3(OBut)7(HNMe2) and [K(18-crown-6)][Mo4(μ4-H)(OR)12] (Râ€=â€Pri or CH2But). Journal of the Chemical Society Dalton Transactions, 1998, , 2563-2568.	1.1	9
300	Structure and stability of one-dimensional (MX2)n polymers. A band structure analysis. Inorganic Chemistry, 1983, 22, 3856-3861.	1.9	8
301	Synthesis, Structure, and Bonding of [CpCoW2(OCH2tBu)6], and Comments on the Combining Properties of CO and CpCo. Angewandte Chemie International Edition in English, 1992, 31, 896-898.	4.4	8
302	Olefin insertion in the Ru–H and Ru–F bonds of pentacoordinated d6 Ru(ii) species: a DFT study. Dalton Transactions, 2003, , 839.	1.6	8
303	Theoretical Studies on the Reaction Mechanism of Metal-Assisted CH Activation. , 2013, , 695-726.		8
304	Hydrazine N–N Bond Cleavage over Silica-Supported Tantalum-Hydrides. Inorganic Chemistry, 2015, 54, 11648-11659.	1.9	8
305	Mechanistic insight into organic and industrial transformations: general discussion. Faraday Discussions, 2019, 220, 282-316.	1.6	8
306	Is the Allylpalladium Structure Altered between Solid and Solutions?. Journal of the American Chemical Society, 2004, 126, 9079-9084.	6.6	7

#	Article	IF	CITATIONS
307	Efficient alkene hydrosilation with bis(8-quinolyl)phosphine (NPN) nickel catalysts. The dominant role of silyl-over hydrido-nickel catalytic intermediates. Chemical Science, 2020, 11, 5043-5051.	3.7	7
308	Theoretical study of the conformation of cis-bis(carbene) complexes. Organometallics, 1988, 7, 829-835.	1.1	5
309	Hydrides and Hydrogen Bonding. , 2001, , 75-88.		5
310	Self-Consistency versus "Best-Fit―Approaches in Understanding the Structure of Metal Nitrosyl Complexes. Organometallics, 2004, 23, 6008-6014.	1.1	5
311	Stereoselectivity through a network of non-classical CH weak interactions: a prospective study of a bicyclic organocatalytic scaffold. New Journal of Chemistry, 2014, 38, 5975-5982.	1.4	5
312	Potential Energy Surface of BH ₄ ^{â^'} and Molecular Deformations Induced by an External Cation. Israel Journal of Chemistry, 1980, 19, 292-298.	1.0	4
313	Isomerization of Double and Triple C-C Bonds at a Metal Center. Catalysis By Metal Complexes, 2002, , 137-160.	0.6	4
314	Concluding remarks for "Mechanistic Processes in Organometallic Chemistry― the importance of a multidisciplinary approach. Faraday Discussions, 2019, 220, 489-495.	1.6	4
315	X-Ray and Theoretical Study of Cyclophane-tetracyanoethylene Charge Transfer Complexes. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1988, 164, 179-195.	0.3	3
316	FemEx—female excellence in theoretical and computational chemistry. International Journal of Quantum Chemistry, 2015, 115, 1195-1196.	1.0	3
317	Computational and theoretical approaches for mechanistic understanding: general discussion. Faraday Discussions, 2019, 220, 464-488.	1.6	3
318	Computational Catalysis: A Land of Opportunities. Topics in Catalysis, 2022, 65, 1-5.	1.3	3
319	Conformational complexity of morphine and morphinum in the gas phase and in water. A DFT and MP2 study. RSC Advances, 2014, 4, 24729-24735.	1.7	2
320	From the Felkinâ€Anh Rule to the Grignard Reaction: an Almost Circular 50â€Year Adventure in the World of Molecular Structures and Reaction Mechanisms with Computational Chemistry**. Israel Journal of Chemistry, 2022, 62, .	1.0	2
321	Agostic Interactions from a Computational Perspective: One Name, Many Interpretations. ChemInform, 2005, 36, no.	0.1	1
322	Nitrido Dimers and Trimers of Tungsten Supported by tBuMe2SiO and CF3Me2CO Ligands, Respectively. Factors Influencing the Reductive Cleavage of Nitriles by Tungsten–Tungsten Triple Bonds and An Analysis of the Structure of the Cyclotrimer. Chemistry - A European Journal, 1999, 5, 2318-2326.	1.7	1
323	Perspective on "Intermolecular orbital theory of the interactions between conjugated systems.―I General theory; II Thermal and photochemical cycloadditions. , 2000, , 289-291.		1
324	Theoretical study of the conformations of cis carbene-acetylene transition metal complexes. Computational and Theoretical Chemistry, 1988, 166, 475-480.	1.5	0

#	Article	IF	CITATIONS
325	Tungsten (6+) tris(pinacolate) : structure and comments on the preference for an octahedral geometry relative to trigonal prismatic (D3h) for a d0 complex in the presence of strong .pidonor ligands. [Erratum to document cited in CA120:123521]. Inorganic Chemistry, 1994, 33, 3204-3204.	1.9	0
326	Biscarbene—Ruthenium Complexes in Catalysis: Novel Stereoselective Synthesis of (1E,3E)-1,4-Disubstituted-1,3-dienes via Head-to-Head Coupling of Terminal Alkynes and Addition of Carboxylic Acids ChemInform, 2004, 35, no.	0.1	0
327	Reflections on 30 years in the life of a journal. New Journal of Chemistry, 2007, 31, 1995.	1.4	0
328	Structures of d4MH3X: a Computational Study of the Influence of the Metal and the Ligands. Inorganic Chemistry, 2012, 51, 5705-5715.	1.9	0
329	Understanding unusual element-element bond formation and activation: general discussion. Faraday Discussions, 2019, 220, 376-385.	1.6	Ο
330	Physical methods for mechanistic understanding: general discussion. Faraday Discussions, 2019, 220, 144-178.	1.6	0