Richard M Napier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2684538/publications.pdf

Version: 2024-02-01

201674 144013 3,424 63 27 57 citations h-index g-index papers 69 69 69 3682 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An in-frame deletion mutation in the degron tail of auxin coreceptor <i>IAA2 </i> confers resistance to the herbicide 2,4-D in <i>Sisymbrium orientale </i> Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
2	Mode of Action of a Novel Synthetic Auxin Herbicide Halauxifen-Methyl. Agronomy, 2022, 12, 1659.	3.0	12
3	Hyaluronan (HA)-inspired glycopolymers as molecular tools for studying HA functions. RSC Chemical Biology, 2021, 2, 568-576.	4.1	4
4	New fluorescent auxin probes visualise tissueâ€specific and subcellular distributions of auxin in Arabidopsis. New Phytologist, 2021, 230, 535-549.	7. 3	15
5	Recent Trends in Advanced Polymer Materials in Agriculture Related Applications. ACS Applied Polymer Materials, 2021, 3, 1203-1217.	4.4	96
6	Seedling developmental defects upon blocking CINNAMATEâ€4â€HYDROXYLASE are caused by perturbations in auxin transport. New Phytologist, 2021, 230, 2275-2291.	7. 3	27
7	The Story of Auxin-Binding Protein 1 (ABP1). Cold Spring Harbor Perspectives in Biology, 2021, 13, a039909.	5. 5	23
8	Generating aptamers towards human sperm cells using massively parallel sequencing. Analytical and Bioanalytical Chemistry, 2021, 413, 5821-5834.	3.7	5
9	Ultrafast spectroscopic investigation of discrete co-assemblies of a Zn-porphyrin–polymer conjugate with a hexapyridyl template. Chemical Physics Letters, 2021, 777, 138736.	2.6	O
10	Synthetic auxin herbicides: finding the lock and key to weed resistance. Plant Science, 2020, 300, 110631.	3.6	33
11	Multi-Arm Star-Shaped Glycopolymers with Precisely Controlled Core Size and Arm Length. Biomacromolecules, 2020, 21, 3736-3744.	5.4	14
12	Bottlebrush Glycopolymers from 2-Oxazolines and Acrylamides for Targeting Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin and Mannose-Binding Lectin. Biomacromolecules, 2020, 21, 2298-2308.	5.4	22
13	Non-canonical auxin signalling: fast and curious. Journal of Experimental Botany, 2019, 70, 2609-2614.	4.8	33
14	Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization. Plant Physiology, 2019, 180, 1152-1165.	4.8	21
15	Quinclorac resistance induced by the suppression of the expression of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase genes in Echinochloa crus-galli var. zelayensis. Pesticide Biochemistry and Physiology, 2018, 146, 25-32.	3.6	26
16	Auxin molecular field maps define <scp>AUX</scp> 1 selectivity: many auxin herbicides are not substrates. New Phytologist, 2018, 217, 1625-1639.	7.3	24
17	Weed resistance to synthetic auxin herbicides. Pest Management Science, 2018, 74, 2265-2276.	3.4	113
18	A cheminformatics review of auxins as herbicides. Journal of Experimental Botany, 2018, 69, 265-275.	4.8	36

#	Article	IF	Citations
19	Front Cover: Cover Image, Volume 74, Issue 10. Pest Management Science, 2018, 74, i.	3.4	o
20	Advances in Understanding the Mechanism of Action of the Auxin Permease AUX1. International Journal of Molecular Sciences, 2018, 19, 3391.	4.1	20
21	Auxins and Cytokinins—The Role of Subcellular Organization on Homeostasis. International Journal of Molecular Sciences, 2018, 19, 3115.	4.1	49
22	It starts with TIRs. Nature Plants, 2018, 4, 410-411.	9.3	6
23	Jasmonic Acid Inhibits Auxin-Induced Lateral Rooting Independently of the CORONATINE INSENSITIVE1 Receptor. Plant Physiology, 2018, 177, 1704-1716.	4.8	48
24	The Tetrazole Analogue of the Auxin Indole-3-acetic Acid Binds Preferentially to TIR1 and Not AFB5. ACS Chemical Biology, 2018, 13, 2585-2594.	3.4	13
25	Single-Chain Glycopolymer Folding via Host–Guest Interactions and Its Unprecedented Effect on DC-SIGN Binding. Biomacromolecules, 2018, 19, 3040-3047.	5.4	49
26	Phyllostictine A: total synthesis, structural verification and determination of substructure responsible for plant growth inhibition. Chemical Communications, 2018, 54, 7211-7214.	4.1	7
27	Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches. Annual Review of Plant Biology, 2017, 68, 323-348.	18.7	74
28	cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation. Plant Physiology, 2017, 173, 552-565.	4.8	61
29	Jasmonate – a blooming decade. Journal of Experimental Botany, 2017, 68, 1299-1302.	4.8	8
30	Evolutionary Conserved Cysteines Function as cis-Acting Regulators of Arabidopsis PIN-FORMED 2 Distribution. International Journal of Molecular Sciences, 2017, 18, 2274.	4.1	28
31	Assaying Auxin Receptor Activity Using SPR Assays with F-Box Proteins and Aux/IAA Degrons. Methods in Molecular Biology, 2017, 1497, 159-191.	0.9	9
32	Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal. PLoS ONE, 2016, 11, e0152148.	2.5	6
33	The allelochemical MDCA inhibits lignification and affects auxin homeostasis. Plant Physiology, 2016, 172, pp.01972.2015.	4.8	14
34	Tomographic docking suggests the mechanism of auxin receptor TIR1 selectivity. Open Biology, 2016, 6, 160139.	3.6	24
35	Retaining individualities: the photodynamics of self-ordering porphyrin assemblies. Chemical Communications, 2016, 52, 1938-1941.	4.1	11
36	Stability of small ubiquitin-like modifier (SUMO) proteases OVERLY TOLERANT TO SALT1 and -2 modulates salicylic acid signalling and SUMO1/2 conjugation in <i>Arabidopsis thaliana</i> Experimental Botany, 2016, 67, 353-363.	4.8	48

#	Article	IF	CITATIONS
37	Ring closing metathesis reactions of \hat{l}_{\pm} -methylene- \hat{l}_{-}^2 -lactams: application to the synthesis of a simplified phyllostictine analogue with herbicidal activity. Organic and Biomolecular Chemistry, 2015, 13, 7655-7663.	2.8	14
38	A Highly Selective Biosensor with Nanomolar Sensitivity Based on Cytokinin Dehydrogenase. PLoS ONE, 2014, 9, e90877.	2.5	4
39	Defining Binding Efficiency and Specificity of Auxins for SCF ^{TIR1/AFB} -Aux/IAA Co-receptor Complex Formation. ACS Chemical Biology, 2014, 9, 673-682.	3.4	100
40	Auxin Receptors and Perception. , 2014, , 101-116.		3
41	Plant pest and disease diagnosis using electronic nose and support vector machine approach. Journal of Plant Diseases and Protection, 2012, 119, 200-207.	2.9	25
42	A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nature Chemical Biology, 2012, 8, 477-485.	8.0	490
43	Biosensors in plants. Current Opinion in Plant Biology, 2010, 13, 736-743.	7.1	43
44	The Binding of Auxin to the Arabidopsis Auxin Influx Transporter AUX1. Plant Physiology, 2008, 148, 529-535.	4.8	56
45	Receptors for auxin: will it all end in TIRs?. Trends in Plant Science, 2006, 11, 217-223.	8.8	121
46	Altered Expression of Auxin-binding Protein 1 Affects Cell Expansion and Auxin Pool Size in Tobacco Cells. Journal of Plant Growth Regulation, 2006, 25, 69-78.	5.1	11
47	TIRs of joy: new receptors for auxin. BioEssays, 2005, 27, 1213-1217.	2.5	11
48	Plant Hormone Binding Sites. Annals of Botany, 2004, 93, 227-233.	2.9	34
49	Structure-Function Analysis of the Presumptive Arabidopsis Auxin Permease AUX1[W]. Plant Cell, 2004, 16, 3069-3083.	6.6	308
50	Growth of plant culture. Trends in Plant Science, 2003, 8, 568-569.	8.8	0
51	A short history of auxin-binding proteins. Plant Molecular Biology, 2002, 49, 339-348.	3.9	142
52	Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO Journal, 2002, 21, 2877-2885.	7.8	138
53	A short history of auxin-binding proteins. Plant Molecular Biology, 2002, 49, 339-48.	3.9	54
54	Models of Auxin Binding. Journal of Plant Growth Regulation, 2001, 20, 244-254.	5.1	38

#	Article	IF	CITATIONS
55	Quick on the Uptake: Characterization of a Family of Plant Auxin Influx Carriers. Journal of Plant Growth Regulation, 2001, 20, 217-225.	5.1	101
56	Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant Journal, 2001, 25, 399-406.	5.7	163
57	Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant Journal, 1999, 19, 481-488.	5.7	171
58	PROTEIN RETENTION IN THE ENDOPLASMIC RETICULUM OF INSECT CELLS IS NOT COMPROMISED BY BACULOVIRUS INFECTION. Cell Biology International, 1996, 20, 413-422.	3.0	12
59	Molecular analysis of auxin-specific signal transduction. Plant Growth Regulation, 1996, 18, 1-6.	3.4	7
60	Auxin action and auxinâ€binding proteins. New Phytologist, 1995, 129, 167-201.	7.3	98
61	Auxin Receptors and Auxin Binding Proteins. Critical Reviews in Plant Sciences, 1995, 14, 27-47.	5.7	75
62	Auxin Receptors and Auxin Binding Proteins. Critical Reviews in Plant Sciences, 1995, 14, 27-27.	5.7	6
63	Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant Journal, 1993, 4, 41-46.	5.7	186