
Jayadeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2684223/publications.pdf Version: 2024-02-01

Ιλγληενλ

#	Article	IF	CITATIONS
1	Block Sparse Variational Bayes Regression Using Matrix Variate Distributions With Application to SSVEP Detection. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 351-365.	11.3	2
2	Interpreting the optical properties of oxide glasses with machine learning and Shapely additive explanations. Journal of the American Ceramic Society, 2022, 105, 4046-4057.	3.8	17
3	A new deep learning technique reveals the exclusive functional contributions of individual cancer mutations. Journal of Biological Chemistry, 2022, 298, 102177.	3.4	3
4	Linear time identification of local and global outliers. Neurocomputing, 2021, 429, 141-150.	5.9	2
5	Minimal Complexity Machines Under Weight Quantization. IEEE Transactions on Computers, 2021, 70, 1189-1198.	3.4	1
6	Kernel optimization using conformal maps for the minimal complexity machine. Engineering Applications of Artificial Intelligence, 2021, 106, 104493.	8.1	1
7	Sparsity in function and derivative approximation via the empirical feature space. Information Sciences, 2020, 512, 402-415.	6.9	1
8	Neurodynamical classifiers with low model complexity. Neural Networks, 2020, 132, 405-415.	5.9	2
9	Design Optimization. IETE Journal of Research, 2020, 66, 731-732.	2.6	2
10	Molecular signature comprising 11 platelet-genes enables accurate blood-based diagnosis of NSCLC. BMC Genomics, 2020, 21, 744.	2.8	13
11	QMCM: Minimizing Vapnik's bound on the VC dimension. Neurocomputing, 2020, 399, 352-360.	5.9	8
12	Deep learning aided rational design of oxide glasses. Materials Horizons, 2020, 7, 1819-1827.	12.2	54
13	Learning from Low Training Data using Classifiers with Derivative Constraints. , 2019, , .		0
14	Twin Neural Networks for the classification of large unbalanced datasets. Neurocomputing, 2019, 343, 34-49.	5.9	19
15	Ultra-Sparse Classifiers Through Minimizing the VC Dimension in the Empirical Feature Space. Neural Processing Letters, 2018, 48, 881-913.	3.2	3
16	EigenSample: A non-iterative technique for adding samples to small datasets. Applied Soft Computing Journal, 2018, 70, 1064-1077.	7.2	14
17	Discovery of rare cells from voluminous single cell expression data. Nature Communications, 2018, 9, 4719.	12.8	91
18	Non-Mercer Large Scale Multiclass Least Squares Minimal Complexity Machines. , 2018, , .		3

#	Article	IF	CITATIONS
19	Twin Neural Networks for Efficient EEG Signal Classification. , 2018, , .		7
20	Eigen-MM: EigenAnt Modified Mtsls1 for local search. Swarm and Evolutionary Computation, 2018, 43, 166-183.	8.1	1
21	Sparse short-term time series forecasting models via minimum model complexity. Neurocomputing, 2017, 243, 1-11.	5.9	9
22	Large-Scale Minimal Complexity Machines Using Explicit Feature Maps. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 2653-2662.	9.3	9
23	The Twin SVM Minimizes the Total Risk. , 2017, , 395-405.		2
24	TWSVM for Unsupervised and Semi-supervised Learning. Studies in Computational Intelligence, 2017, , 125-152.	0.9	3
25	Applications Based on TWSVM. Studies in Computational Intelligence, 2017, , 193-206.	0.9	Ο
26	TWSVR: Twin Support Vector Machine Based Regression. Studies in Computational Intelligence, 2017, , 63-101.	0.9	0
27	Twin Support Vector Machines. Studies in Computational Intelligence, 2017, , .	0.9	13
28	Some Additional Topics. Studies in Computational Intelligence, 2017, , 153-192.	0.9	0
29	Twin Support Vector Machines (TWSVM) for Classification. Studies in Computational Intelligence, 2017, , 43-62.	0.9	1
30	Improved sEMG signal classification using the Twin SVM. , 2016, , .		12
31	EigenAnt assisted IACO <inf>â,,</inf> for continuous global optimization. , 2016, , .		0
32	Learning a hyperplane regressor through a tight bound on the VC dimension. Neurocomputing, 2016, 171, 1610-1616.	5.9	12
33	<mml:math <br="" altimg="si0042.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd">xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math>	8.1	12
34	xminstib="http://www.elsevier.com/xml/common/table/dtd" xminstsb="http://www.elsevier.com/. Swar The MC-ELM: Learning an ELM-like network with minimum VC dimension. , 2015, , .		4
35	High performance EEG signal classification using classifiability and the Twin SVM. Applied Soft Computing Journal, 2015, 30, 305-318.	7.2	57
36	Learning a hyperplane classifier by minimizing an exact bound on the VC dimension1. Neurocomputing, 2015, 149, 683-689.	5.9	33

#	Article	IF	CITATIONS
37	The Coupled EigenAnt algorithm for shortest path problems. , 2014, , .		2
38	Convergence results for continuous-time dynamics arising in ant colony optimization. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 7031-7036.	0.4	3
39	Ants find the shortest path: a mathematical proof. Swarm Intelligence, 2013, 7, 43-62.	2.2	25
40	Using Sequential Unconstrained Minimization Techniques to simplify SVM solvers. Neurocomputing, 2012, 77, 253-260.	5.9	15
41	Reduced twin support vector regression. Neurocomputing, 2011, 74, 1474-1477.	5.9	34
42	Trail formation in ants. AÂgeneralized Polya urn process. Swarm Intelligence, 2010, 4, 145-171.	2.2	9
43	Twin SVM for Gesture Classification Using the Surface Electromyogram. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 301-308.	3.2	117
44	Learning the optimal kernel for Fisher discriminant analysis via second order cone programming. European Journal of Operational Research, 2010, 203, 692-697.	5.7	16
45	Hybrid independent component analysis and twin support vector machine learning scheme for subtle gesture recognition. Biomedizinische Technik, 2010, 55, 301-307.	0.8	11
46	Regularized least squares fuzzy support vector regression for financial time series forecasting. Expert Systems With Applications, 2009, 36, 132-138.	7.6	97
47	Optimal kernel selection in twin support vector machines. Optimization Letters, 2009, 3, 77-88.	1.6	96
48	Knowledge based proximal support vector machines. European Journal of Operational Research, 2009, 195, 914-923.	5.7	37
49	Zero Norm Least Squares Proximal SVR. Lecture Notes in Computer Science, 2009, , 38-43.	1.3	1
50	Incremental Twin Support Vector Machines. Statistical Science and Interdisciplinary Research, 2009, , 263-272.	0.0	0
51	Regularized least squares support vector regression for the simultaneous learning of a function and its derivatives. Information Sciences, 2008, 178, 3402-3414.	6.9	29
52	Linear potential proximal support vector machines for pattern classification. Optimization Methods and Software, 2008, 23, 491-500.	2.4	0
53	Fuzzy Twin Support Vector Machines for Pattern Classification. Statistical Science and Interdisciplinary Research, 2008, , 131-142.	0.0	15
54	Twin Support Vector Machines for Pattern Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29, 905-910.	13.9	1,280

#	Article	IF	CITATIONS
55	Fuzzy multi-category proximal support vector classification via generalized eigenvalues. Soft Computing, 2007, 11, 679-685.	3.6	25
56	Regularized Least Squares Twin SVR for the Simultaneous Learning of a Function and its Derivative. , 2006, , .		3
57	Regularized Least Squares Fuzzy Support Vector Regression for Time Series Forecasting. , 2006, , .		2
58	Learning To Optimize Constrained Problems. , 2006, , .		0
59	Learning To Optimize VLSI Design Problems. , 2006, , .		0
60	Fuzzy Proximal Support Vector Classification Via Generalized Eigenvalues. Lecture Notes in Computer Science, 2005, , 360-363.	1.3	8
61	Fast and robust learning through fuzzy linear proximal support vector machines. Neurocomputing, 2004, 61, 401-411.	5.9	49
62	Performance of neural networks for predicting yarn properties using principal component analysis. Journal of Applied Polymer Science, 2004, 91, 1746-1751.	2.6	20
63	A Neural Network With <tex>\$O(N)\$</tex> Neurons for Ranking <tex>\$N\$</tex> Numbers in <tex>\$O(1/N)\$</tex> Time. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2004, 51, 2044-2051.	0.1	25
64	A Study on the Capability of a Neural Network Ranking Fibre Parameters Having an Influence on Yarn Properties. Journal of the Textile Institute, 2003, 94, 186-193.	1.9	9
65	Recurrent Neural Networks with Nonlinear Synapses for Solving Optimization Problems. IETE Journal of Research, 2003, 49, 197-209.	2.6	1
66	Sequential chaotic annealing neural network for CDMA multiuser detection. , 2002, , .		1
67	Sequential chaotic annealing and its application to multilayer channel routing. , 1999, , .		1
68	Relations Between Hopfield-Type Continuous Networks and Discrete-Time Binary Networks. IETE Journal of Research, 1996, 42, 215-221.	2.6	0
69	A neural network for the Steiner minimal tree problem. Biological Cybernetics, 1994, 70, 485-494.	1.3	7
70	A neural network for the Steiner minimal tree problem. Biological Cybernetics, 1994, 70, 485-494.	1.3	2
71	ENEAD-An Efficient Neural-Based Analog-to-Digital Converter. IETE Journal of Research, 1992, 38, 59-61.	2.6	0
72	Optimization with neural networks: a recipe for improving convergence and solution quality. Biological Cybernetics, 1992, 67, 445-449.	1.3	10

#	Article	IF	CITATIONS
73	GENESIS—A Standard Cell Based VLSI Design System. IETE Journal of Research, 1990, 36, 259-264.	2.6	Ο
74	The compact analog neural network-model of a new paradigm for neural based optimization, and its hardware realization. , 0, , .		0
75	Digital pulse logic-a new paradigm for the hardware realization of combinational and sequential digital logic. , 0, , .		Ο
76	Binary classification by SVM based tree type neural networks. , 0, , .		3
77	A novel digital neural network for the travelling salesman problem. , 0, , .		5
78	Regularized Least Squares Fuzzy Support Vector Regression for Time Series Forecasting. , 0, , .		0
79	Regularized Least Squares Twin SVR for the Simultaneous Learning of a Function and its Derivative. , 0, , .		0