
Shenying Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2684183/publications.pdf Version: 2024-02-01

SHENVING FANC

#	Article	IF	CITATIONS
1	Evaluation of Plasma IL-6 in Patients with Melanoma as a Prognostic and Checkpoint Immunotherapy Predictive Biomarker. Journal of Investigative Dermatology, 2022, 142, 2046-2049.e3.	0.7	8
2	Functional annotation of melanoma risk loci identifies novel susceptibility genes. Carcinogenesis, 2020, 41, 452-457.	2.8	15
3	Characterization of novel neutralizing mouse monoclonal antibody JM1-24-3 developed against MUC18 in metastatic melanoma. Journal of Experimental and Clinical Cancer Research, 2020, 39, 273.	8.6	5
4	Conditional Generative Adversarial Networks for Individualized Treatment Effect Estimation and Treatment Selection. Frontiers in Genetics, 2020, 11, 585804.	2.3	9
5	Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nature Genetics, 2020, 52, 494-504.	21.4	138
6	Role of Immune Response, Inflammation, and Tumor Immune Response–Related Cytokines/Chemokines in Melanoma Progression. Journal of Investigative Dermatology, 2019, 139, 2352-2358.e3.	0.7	23
7	Genetic variants in <i>ELOVL2</i> and <i>HSD17B12</i> predict melanomaâ€specific survival. International Journal of Cancer, 2019, 145, 2619-2628.	5.1	11
8	Genetic variants in the calcium signaling pathway genes are associated with cutaneous melanoma-specific survival. Carcinogenesis, 2019, 40, 279-288.	2.8	6
9	Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncology, The, 2018, 19, 310-322.	10.7	486
10	Genetic variants in <i>RORA</i> and <i>DNMT1</i> associated with cutaneous melanoma survival. International Journal of Cancer, 2018, 142, 2303-2312.	5.1	13
11	Genetic variants in the metzincin metallopeptidase family genes predict melanoma survival. Molecular Carcinogenesis, 2018, 57, 22-31.	2.7	5
12	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	7.1	376
13	Genetic Variants in WNT2B and BTRC Predict Melanoma Survival. Journal of Investigative Dermatology, 2017, 137, 1749-1756.	0.7	5
14	Association between Body Mass Index, C-Reactive Protein Levels, and Melanoma Patient Outcomes. Journal of Investigative Dermatology, 2017, 137, 1792-1795.	0.7	40
15	Genetic variants in the integrin signaling pathway genes predict cutaneous melanoma survival. International Journal of Cancer, 2017, 140, 1270-1279.	5.1	4
16	Genetic variants in the genes encoding rho GTPases and related regulators predict cutaneous melanomaâ€specific survival. International Journal of Cancer, 2017, 141, 721-730.	5.1	8
17	Global methylation of blood leukocyte DNA and risk of melanoma. International Journal of Cancer, 2017, 140, 1503-1509.	5.1	12
18	Melanoma Expression Genes Identified through Genome-Wide Association Study ofÂBreslow Tumor Thickness. Journal of Investigative Dermatology, 2017, 137, 253-257.	0.7	2

SHENYING FANG

#	Article	IF	CITATIONS
19	Genetic variants of PDGF signaling pathway genes predict cutaneous melanoma survival. Oncotarget, 2017, 8, 74595-74606.	1.8	3
20	No prognostic value added by vitamin D pathway SNPs to current prognostic system for melanoma survival. PLoS ONE, 2017, 12, e0174234.	2.5	7
21	Genetic variants in the vitamin <scp>D</scp> pathway genes <i><scp>VDBP</scp></i> Âand <i><scp>RXRA</scp></i> modulate cutaneous melanoma diseaseâ€specific survival. Pigment Cell and Melanoma Research, 2016, 29, 176-185.	3.3	19
22	Mitochondrial DNA 4977â€base pair common deletion in blood leukocytes and melanoma risk. Pigment Cell and Melanoma Research, 2016, 29, 372-378.	3.3	7
23	Genetic variants in the PIWIâ€piRNA pathway gene <i>DCP1A</i> predict melanoma diseaseâ€specific survival. International Journal of Cancer, 2016, 139, 2730-2737.	5.1	21
24	Telomere structure and maintenance gene variants and risk of five cancer types. International Journal of Cancer, 2016, 139, 2655-2670.	5.1	43
25	A comprehensive genomeâ€wide analysis of melanoma Breslow thickness identifies interaction between <i>CDC42</i> and <i>SCIN</i> genetic variants. International Journal of Cancer, 2016, 139, 2012-2020.	5.1	8
26	Association of Vitamin D Levels With Outcome in Patients With Melanoma After Adjustment For C-Reactive Protein. Journal of Clinical Oncology, 2016, 34, 1741-1747.	1.6	64
27	The relationship between blood <scp>IL</scp> â€∎2p40 level and melanoma progression. International Journal of Cancer, 2015, 136, 1874-1880.	5.1	5
28	Integrated pathway and epistasis analysis reveals interactive effect of genetic variants at <scp><i>TERF1</i></scp> and <scp><i>AFAP1L2</i></scp> loci on melanoma risk. International Journal of Cancer, 2015, 137, 1901-1909.	5.1	16
29	Genetic variants in Hippo pathway genes <i>YAP1,TEAD1</i> and <i>TEAD4/i>are associated with melanoma-specific survival. International Journal of Cancer, 2015, 137, 638-645.</i>	5.1	48
30	C-Reactive Protein As a Marker of Melanoma Progression. Journal of Clinical Oncology, 2015, 33, 1389-1396.	1.6	71
31	Functional Variants in Notch Pathway Genes <i>NCOR2</i> , <i>NCSTN</i> , and <i>MAML2</i> Predict Survival of Patients with Cutaneous Melanoma. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1101-1110.	2.5	20
32	Reply to Z. Li et al. Journal of Clinical Oncology, 2015, 33, 3674-3675.	1.6	1
33	Risk factors shared by COPD and lung cancer and mediation effect of COPD: two center case–control studies. Cancer Causes and Control, 2015, 26, 11-24.	1.8	26
34	Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nature Genetics, 2015, 47, 987-995.	21.4	218
35	Association of Common Genetic Polymorphisms with Melanoma Patient IL-12p40 Blood Levels, Risk, and Outcomes. Journal of Investigative Dermatology, 2015, 135, 2266-2272.	0.7	7
36	Genetic Variants in Fanconi Anemia Pathway Genes BRCA2 and FANCA Predict Melanoma Survival. Journal of Investigative Dermatology, 2015, 135, 542-550.	0.7	28

SHENYING FANG

#	Article	lF	CITATIONS
37	Mitochondrial DNA Copy Number in Peripheral Blood and Melanoma Risk. PLoS ONE, 2015, 10, e0131649.	2.5	29
38	Identification of a melanoma susceptibility locus and somatic mutation in <i>TET2</i> . Carcinogenesis, 2014, 35, 2097-2101.	2.8	41
39	Natural and orthogonal model for estimating gene–gene interactions applied to cutaneous melanoma. Human Genetics, 2014, 133, 559-574.	3.8	10
40	A variant in FTO shows association with melanoma risk not due to BMI. Nature Genetics, 2013, 45, 428-432.	21.4	111
41	Gene Variants in Angiogenesis and Lymphangiogenesis and Cutaneous Melanoma Progression. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 827-834.	2.5	17
42	Joint Effect of Multiple Common SNPs Predicts Melanoma Susceptibility. PLoS ONE, 2013, 8, e85642.	2.5	40
43	Building a Statistical Model for Predicting Cancer Genes. PLoS ONE, 2012, 7, e49175.	2.5	2
44	On the Interplay of Telomeres, Nevi and the Risk of Melanoma. PLoS ONE, 2012, 7, e52466.	2.5	18
45	Genome-wide association study identifies novel loci predisposing to cutaneous melanomaâ€. Human Molecular Genetics, 2011, 20, 5012-5023.	2.9	187
46	Genome-wide association study identifies three new melanoma susceptibility loci. Nature Genetics, 2011, 43, 1108-1113.	21.4	230
47	Sex-specific effect of the TP53 PIN3 polymorphism on cancer risk in a cohort study of TP53 germline mutation carriers. Human Genetics, 2011, 130, 789-794.	3.8	10
48	Psoriasis prediction from genome-wide SNP profiles. BMC Dermatology, 2011, 11, 1.	2.1	27
49	Complications associated with erythropoietin-stimulating agents in patients with metastatic breast cancer. Cancer, 2011, 117, 3641-3649.	4.1	16
50	Effects of MDM2, MDM4 and TP53 Codon 72 Polymorphisms on Cancer Risk in a Cohort Study of Carriers of TP53 Germline Mutations. PLoS ONE, 2010, 5, e10813.	2.5	37
51	Ordered Subset Analysis Identifies Loci Influencing Lung Cancer Risk on Chromosomes 6q and 12q. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 3157-3166.	2.5	10
52	Impact of Diabetes Mellitus on Complications and Outcomes of Adjuvant Chemotherapy in Older Patients With Breast Cancer. Journal of Clinical Oncology, 2009, 27, 2170-2176.	1.6	181
53	Longâ€ŧerm survival after radical prostatectomy compared to other treatments in older men with local/regional prostate cancer. Journal of Surgical Oncology, 2008, 97, 583-591.	1.7	32
54	Completion of adjuvant radiation therapy among women with breast cancer. Cancer, 2008, 113, 22-29.	4.1	60

SHENYING FANG

#	Article	IF	CITATIONS
55	Ethnic variations in diagnosis, treatment, socioeconomic status, and survival in a large populationâ€based cohort of elderly patients with nonâ€Hodgkin lymphoma. Cancer, 2008, 113, 3231-3241.	4.1	83
56	Radiation Use and Long-Term Survival in Breast Cancer Patients With T1, T2 Primary Tumors and One to Three Positive Axillary Lymph Nodes. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1022-1027.	0.8	29
57	Mammography Before Diagnosis Among Women Age 80 Years and Older With Breast Cancer. Journal of Clinical Oncology, 2008, 26, 2482-2488.	1.6	93
58	Use of Intravenous Bisphosphonates in Older Women with Breast Cancer. Oncologist, 2008, 13, 494-502.	3.7	25
59	Impact of Treatment and Socioeconomic Status on Racial Disparities in Survival Among Older Women With Breast Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2008, 31, 125-132.	1.3	93
60	Elderly patients with non-Hodgkin lymphoma who receive chemotherapy are at higher risk for osteoporosis and fractures. Leukemia and Lymphoma, 2007, 48, 1514-1521.	1.3	35
61	Acute Myeloid Leukemia After Adjuvant Breast Cancer Therapy in Older Women: Understanding Risk. Journal of Clinical Oncology, 2007, 25, 3871-3876.	1.6	134
62	Chemotherapy and Survival for Patients With Multiple Myeloma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2007, 30, 540-548.	1.3	16
63	Variations in Chemotherapy and Radiation Therapy in a Large Nationwide and Community-Based Cohort of Elderly Patients With Non-Hodgkin Lymphoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2007, 30, 163-171.	1.3	13
64	Racial disparities and socioeconomic status in association with survival in a large population-based cohort of elderly patients with colon cancer. Cancer, 2007, 110, 660-669.	4.1	157
65	Socioeconomic status and cervical cancer survival among older women: Findings from the SEER–Medicare linked data cohorts. Gynecologic Oncology, 2006, 102, 278-284.	1.4	60
66	Racial disparity and socioeconomic status in association with survival in older men with local/regional stage prostate carcinoma. Cancer, 2006, 106, 1276-1285.	4.1	212
67	Variation in modes of chemotherapy administration for breast carcinoma and association with hospitalization for chemotherapy-related toxicity. Cancer, 2005, 104, 913-924.	4.1	48
68	Temporal and Geographic Variation in the Use of Hematopoietic Growth Factors in Older Women Receiving Breast Cancer Chemotherapy: Findings From a Large Population-Based Cohort. Journal of Clinical Oncology, 2005, 23, 8620-8628.	1.6	31