
Alessandra Pagliarani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2684028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial F1FO-ATPase and permeability transition pore response to sulfide in the midgut gland of Mytilus galloprovincialis. Biochimie, 2021, 180, 222-228.	2.6	4
2	1,5â€Disubstitutedâ€1,2,3â€triazoles as inhibitors of the mitochondrial Ca ²⁺ â€activated F ₁ F _O â€ATP(hydrol)ase and the permeability transition pore. Annals of the New York Academy of Sciences, 2021, 1485, 43-55.	3.8	18
3	Ca ²⁺ as cofactor of the mitochondrial H ⁺ â€translocating <scp>F₁F_Oâ€ATP</scp> (hydrol)ase. Proteins: Structure, Function and Bioinformatics, 2021, 89, 477-482.	2.6	7
4	Incoming news on the F-type ATPase structure and functions in mammalian mitochondria. BBA Advances, 2021, 1, 100001.	1.6	11
5	Biological characteristics and metabolic profile of canine mesenchymal stem cells isolated from adipose tissue and umbilical cord matrix. PLoS ONE, 2021, 16, e0247567.	2.5	7
6	Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life, 2021, 11, 242.	2.4	32
7	Relationship between serum concentration, functional parameters and cell bioenergetics in IPEC-J2 cell line. Histochemistry and Cell Biology, 2021, 156, 59-67.	1.7	14
8	Sulfide affects the mitochondrial respiration, the Ca2+-activated F1FO-ATPase activity and the permeability transition pore but does not change the Mg2+-activated F1FO-ATPase activity in swine heart mitochondria. Pharmacological Research, 2021, 166, 105495.	7.1	15
9	Vitamin K Vitamers Differently Affect Energy Metabolism in IPEC-J2 Cells. Frontiers in Molecular Biosciences, 2021, 8, 682191.	3.5	5
10	The inhibition of gadolinium ion (Gd3+) on the mitochondrial F1FO-ATPase is linked to the modulation of the mitochondrial permeability transition pore. International Journal of Biological Macromolecules, 2021, 184, 250-258.	7.5	5
11	The mitochondrial F1FO-ATPase exploits the dithiol redox state to modulate the permeability transition pore. Archives of Biochemistry and Biophysics, 2021, 712, 109027.	3.0	7
12	Sperm function and mitochondrial activity: An insight on boar sperm metabolism. Theriogenology, 2020, 144, 82-88.	2.1	40
13	Phenylglyoxal inhibition of the mitochondrial F1FO-ATPase activated by Mg2+ or by Ca2+ provides clues on the mitochondrial permeability transition pore. Archives of Biochemistry and Biophysics, 2020, 681, 108258.	3.0	16
14	Nicotinamide Nucleotide Transhydrogenase as a Sensor of Mitochondrial Biology. Trends in Cell Biology, 2020, 30, 1-3.	7.9	20
15	Effects of Hydrogen Sulfide Donor NaHS on Porcine Vascular Wall-Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2020, 21, 5267.	4.1	2
16	Mitochondrial F-type ATP synthase: multiple enzyme functions revealed by the membrane-embedded F _O structure. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 309-321.	5.2	23
17	Emerging Roles for the Mitochondrial ATP Synthase Supercomplexes. Trends in Biochemical Sciences, 2019, 44, 821-823.	7.5	14
18	A Therapeutic Role for the F1FO-ATP Synthase. SLAS Discovery, 2019, 24, 893-903.	2.7	30

#	Article	IF	CITATIONS
19	Mitochondrial Ca ²⁺ â€activated F ₁ F _O â€ATPase hydrolyzes ATP and promotes the permeability transition pore. Annals of the New York Academy of Sciences, 2019, 1457, 142-157.	3.8	23
20	Characterization of metabolic profiles and lipopolysaccharide effects on porcine vascular wall mesenchymal stem cells. Journal of Cellular Physiology, 2019, 234, 16685-16691.	4.1	5
21	Crucial aminoacids in the FO sector of the F1FO-ATP synthase address H+ across the inner mitochondrial membrane: molecular implications in mitochondrial dysfunctions. Amino Acids, 2019, 51, 579-587.	2.7	4
22	Lipid-protein interactions in mitochondrial membranes from bivalve mollusks: molecular strategies in different species. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 227, 12-20.	1.6	7
23	The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD+. Biological Chemistry, 2018, 399, 197-202.	2.5	2
24	From the Ca 2+ -activated F 1 F O -ATPase to the mitochondrial permeability transition pore: an overview. Biochimie, 2018, 152, 85-93.	2.6	25
25	Post-translational modifications of the mitochondrial F 1 F O -ATPase. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2902-2912.	2.4	18
26	Kinetic properties of the mitochondrial F 1 F O -ATPase activity elicited by Ca 2+ in replacement of Mg 2+. Biochimie, 2017, 140, 73-81.	2.6	27
27	Mercury and protein thiols: Stimulation of mitochondrial F1FO-ATPase and inhibition of respiration. Chemico-Biological Interactions, 2016, 260, 42-49.	4.0	31
28	The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives. Journal of Membrane Biology, 2016, 249, 11-21.	2.1	28
29	Preferential nitrite inhibition of the mitochondrial F1FO-ATPase activities when activated by Ca2+ in replacement of the natural cofactor Mg2+. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 345-353.	2.4	17
30	Thiol-Related Regulation of the Mitochondrial F1FO-ATPase Activity. , 2016, , 441-458.		1
31	Lipid unsaturation per se does not explain the physical state of mitochondrial membranes in Mytilus galloprovincialis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 191, 66-75.	1.6	1
32	Novel Drugs Targeting the c-Ring of the F ₁ F _O -ATP Synthase. Mini-Reviews in Medicinal Chemistry, 2016, 16, 815-824.	2.4	21
33	Opposite Rotation Directions in the Synthesis and Hydrolysis of ATP by the ATP Synthase: Hints from a Subunit Asymmetry. Journal of Membrane Biology, 2015, 248, 163-169.	2.1	27
34	The a subunit asymmetry dictates the two opposite rotation directions in the synthesis and hydrolysis of ATP by the mitochondrial ATP synthase. Medical Hypotheses, 2015, 84, 53-57.	1.5	5
35	Thiol oxidation is crucial in the desensitization of the mitochondrial F1FO-ATPase to oligomycin and other macrolide antibiotics. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1882-1891.	2.4	19
36	The mitochondrial F1FO-ATPase desensitization to oligomycin by tributyltin is due to thiol oxidation. Biochimie, 2014, 97, 128-137.	2.6	25

Alessandra Pagliarani

#	Article	IF	CITATIONS
37	Thiol oxidation of mitochondrial FO-c subunits: A way to switch off antimicrobial drug targets of the mitochondrial ATP synthase. Medical Hypotheses, 2014, 83, 160-165.	1.5	19
38	Mussel and mammalian ATP synthase share the same bioenergetic cost of ATP. Journal of Bioenergetics and Biomembranes, 2013, 45, 289-300.	2.3	20
39	Toxicity of organotin compounds: Shared and unshared biochemical targets and mechanisms in animal cells. Toxicology in Vitro, 2013, 27, 978-990.	2.4	54
40	Modifiers of the oligomycin sensitivity of the mitochondrial F1F0-ATPase. Mitochondrion, 2013, 13, 312-319.	3.4	23
41	Dietary Enhancement of Selected Fatty Acid Biosynthesis in the Digestive Gland of Mytilus galloprovincialis Lmk Journal of Agricultural and Food Chemistry, 2013, 61, 973-981.	5.2	16
42	Modulation of the F ₁ F _O â€ATPase function by butyltin compounds. Applied Organometallic Chemistry, 2013, 27, 199-205.	3.5	9
43	Tributyltin-driven enhancement of the DCCD insensitive Mg-ATPase activity in mussel digestive gland mitochondria. Biochimie, 2012, 94, 727-733.	2.6	13
44	Triâ€ <i>n</i> â€butyltin binding to a lowâ€affinity site decreases the F ₁ F _O â€ATPase sensitivity to oligomycin in mussel mitochondria. Applied Organometallic Chemistry, 2012, 26, 593-599.	3.5	18
45	Structural and functional changes in gill mitochondrial membranes from the Mediterranean mussel <i>Mytilus galloprovincialis</i> exposed to triâ€ <i>n</i> â€butyltin. Environmental Toxicology and Chemistry, 2012, 31, 877-884.	4.3	17
46	Organotin Effects in Different Phyla: Discrepancies and Similarities. , 2012, , 174-196.		2
47	Multi-site TBT binding skews the inhibition of oligomycin on the mitochondrial Mg–ATPase in Mytilus galloprovincialis. Biochimie, 2011, 93, 1157-1164.	2.6	22
48	Tributyltin (TBT) and dibutyltin (DBT) differently inhibit the mitochondrial Mg-ATPase activity in mussel digestive gland. Toxicology in Vitro, 2011, 25, 117-124.	2.4	33
49	Tributyltin (TBT) and mitochondrial respiration in mussel digestive gland. Toxicology in Vitro, 2011, 25, 951-959.	2.4	27
50	Tributyltin inhibits the oligomycin-sensitive Mg-ATPase activity in Mytilus galloprovincialis digestive gland mitochondria. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2011, 153, 75-81.	2.6	18
51	Blue-back fish: Fatty acid profile in selected seasons and retention upon baking. Food Chemistry, 2010, 123, 306-314.	8.2	25
52	Lipid and DNA features of Gonyaulax fragilis (Dinophyceae) as potential biomarkers in mucilage genesis. Harmful Algae, 2010, 9, 359-366.	4.8	7
53	Phosphorylated intermediate of the ouabain-insensitive, Na+-stimulated ATPase in rat kidney cortex and rainbow trout gills. Biochimie, 2010, 92, 128-135.	2.6	5
54	Response of Na+-dependent ATPase Activities to the Contaminant Ammonia Nitrogen in Tapes philippinarum: Possible ATPase Involvement in Ammonium Transport. Archives of Environmental Contamination and Toxicology, 2008, 55, 49-56.	4.1	14

#	Article	IF	CITATIONS
55	Tributyltin (TBT) inhibition of oligomycin-sensitive Mg-ATPase activity in mussel mitochondria. Toxicology in Vitro, 2008, 22, 827-836.	2.4	26
56	Effect of temporal and geographical factors on fatty acid composition of M. galloprovincialis from the Adriatic sea. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2008, 149, 241-250.	1.6	54
57	Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2007, 147, 616-626.	1.6	83
58	Response to alkyltins of two Na+-dependent ATPase activities in Tapes philippinarum and Mytilus galloprovincialis. Toxicology in Vitro, 2006, 20, 1145-1153.	2.4	22
59	Chemical and biochemical parameters of cultured diatoms and bacteria from the Adriatic Sea as possible biomarkers of mucilage production. Science of the Total Environment, 2005, 353, 287-299.	8.0	36
60	Response to T3treatment and changing environmental salinity of liver lipid composition, mitochondrial respiration and (Na++ ++ K++)-ATPase activity in rainbow troutOncorhynchus mykissWalbaum. Aquaculture Research, 2002, 33, 891-905.	1.8	7
61	Response of Rainbow Trout Gill Na+â€ATPase to T3and NaCl Administration. Physiological and Biochemical Zoology, 2001, 74, 694-702.	1.5	9
62	Mussel microsomal Na+-Mg2+-ATPase sensitivity to waterborne mercury, zinc and ammonia. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1996, 113, 185-191.	0.5	10
63	Response of rainbow trout gill (Na++K+)-ATPase and chloride cells to T3 and NaCl administration. Fish Physiology and Biochemistry, 1996, 15, 265-274.	2.3	12
64	Lipid composition and microsomal ATPase activities in gills and kidneys of warm- and cold-acclimated sea bass (Dicentrarchus labrax L.). Fish Physiology and Biochemistry, 1993, 12, 293-304.	2.3	16
65	Gill (Na+ + K+)-ATPase involvement and regulation during salmonid adaptation to salt water. Comparative Biochemistry and Physiology A, Comparative Physiology, 1992, 102, 637-643.	0.6	25
66	Lipid composition and mitochondrial respiration in warm- and cold-adapted sea bass. Lipids, 1992, 27, 371-377.	1.7	35
67	Salinity dependence of the ouabain-insensitive Mg2+-dependent Na+-ATPase in gills of rainbow trout (Oncorhynchus mykiss Walbaum) adapted to fresh and brackish water. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 101, 1-7.	0.2	7
68	Salinity-dependence of the properties of gill (Na++K+-ATPase in rainbow trout Oncorhynchus mykiss.) Tj ETQq0 0	0 rgBT /Ον	verlock 10 Ti
	95-105.	0.2	7
70	Mg2+-dependent (Na+ + K+)- and Na+-ATPases in the kidneys of the gilthead bream (Sparus auratus L.). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 97, 343-354.	0.2	4
71	(Na+ + K+)- and Na+-stimulated Mg2+-dependent ATPase activities in kidney of sea bass (Dicentrarchus) Tj ETQq1	1.0.7843 0.2	14 rgBT /Ov

Na+-like effect of monovalent cations in the stimulation of sea bass gill Mg2+-dependent Na+-stimulated ATPase. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 88, 691-695. 72

0.2 1

#	Article	IF	CITATIONS
73	Effect of diets containing different oils on brain fatty acid composition in sea bass (Dicentrarchus) Tj ETQq1 1 0.7	84314 rgB 0.2	8T _/ Overlock
74	Characterization of gill in the sea bass (dicentrarchus labrax L.). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1985, 80, 23-33.	0.2	5
75	Ouabain-insensitive Na+ stimulation of a microsomal Mg+-ATPase in gills of sea bass (Dicentrarchus) Tj ETQq1 1 C).784314 r 0.6	gBT /Overlo