
Bingling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2683847/publications.pdf Version: 2024-02-01

BINCHING LI

#	Article	IF	CITATIONS
1	CLIPON: A CRISPRâ€Enabled Strategy that Turns Commercial Pregnancy Test Strips into General Pointâ€ofâ€Need Test Devices. Angewandte Chemie - International Edition, 2022, 61, e202115907.	13.8	39
2	Coupling nucleic acid circuitry with the CRISPR-Cas12a system for universal and signal-on detection. RSC Advances, 2022, 12, 10374-10378.	3.6	4
3	Dual-hairpin ligation amplification enabled ultra-sensitive and selective ATP detection for cancer monitor. Biosensors and Bioelectronics, 2022, , 114402.	10.1	2
4	Sensitive, general and portable detection of RNAs combining duplex-specific nuclease transduction with an off-shelf signalling platform. Chemical Communications, 2021, 57, 5714-5717.	4.1	6
5	Low-Noise Solid-State Nanopore Enhancing Direct Label-Free Analysis for Small Dimensional Assemblies Induced by Specific Molecular Binding. ACS Applied Materials & Interfaces, 2021, 13, 9482-9490.	8.0	19
6	Study on the Functionalization and Signaling Efficiency of the Hybridization Chain Reaction Using Traditional and Single Molecular Characterizations. ACS Applied Bio Materials, 2021, 4, 3649-3657.	4.6	16
7	SARS-CoV-2 Point-of-Care (POC) Diagnosis Based on Commercial Pregnancy Test Strips and a Palm-Size Microfluidic Device. Analytical Chemistry, 2021, 93, 11956-11964.	6.5	36
8	Establishment of Dual Hairpin Ligation-Induced Isothermal Amplification for Universal, Accurate, and Flexible Nucleic Acid Detection. Analytical Chemistry, 2021, 93, 3315-3323.	6.5	16
9	Homogeneous and Universal Detection of Various Targets with a Dualâ€5tep Transduced Toehold Switch Sensor. ChemBioChem, 2020, 21, 1418-1422.	2.6	3
10	Low-Noise Nanopore Enables In-Situ and Label-Free Tracking of a Trigger-Induced DNA Molecular Machine at the Single-Molecular Level. Journal of the American Chemical Society, 2020, 142, 4481-4492.	13.7	83
11	One-tube smart genetic testing via coupling isothermal amplification and three-way nucleic acid circuit to glucometers. Analytica Chimica Acta, 2020, 1106, 191-198.	5.4	17
12	Real-time gene analysis based on a portable electrochemical microfluidic system. Electrochemistry Communications, 2020, 111, 106665.	4.7	12
13	Homogeneous and universal transduction of various nucleic acids to an off-shelf device based on programmable toehold switch sensing. Chemical Communications, 2020, 56, 2483-2486.	4.1	15
14	A signal-flexible gene diagnostic strategy coupling loop-mediated isothermal amplification with hybridization chain reaction. Analytica Chimica Acta, 2019, 1079, 171-179.	5.4	23
15	Exploration of solid-state nanopores in characterizing reaction mixtures generated from a catalytic DNA assembly circuit. Chemical Science, 2019, 10, 1953-1961.	7.4	39
16	One-Dimensional Assemblies of a DNA Tetrahedron: Manipulations on the Structural Conformation and Single-Molecule Behaviors. ACS Applied Bio Materials, 2019, 2, 1278-1285.	4.6	8
17	An investigation of solid-state nanopores on label-free metal-ion signalling <i>via</i> the transition of RNA-cleavage DNAzyme and the hybridization chain reaction. Nanoscale, 2019, 11, 10339-10347.	5.6	27
18	Smart Sensing Based on DNA–Metal Interaction Enables a Label-Free and Resettable Security Model of Electrochemical Molecular Keypad Lock. ACS Sensors, 2018, 3, 54-58.	7.8	14

BINGLING LI

#	Article	IF	CITATIONS
19	Establishment of a universal and rational gene detection strategy through three-way junction-based remote transduction. Chemical Science, 2018, 9, 760-769.	7.4	54
20	Adaption of a Solid-State Nanopore to Homogeneous DNA Organization Verification and Label-Free Molecular Analysis without Covalent Modification. Analytical Chemistry, 2018, 90, 814-820.	6.5	36
21	Coupling Sensitive Nucleic Acid Amplification with Commercial Pregnancy Test Strips. Angewandte Chemie - International Edition, 2017, 56, 992-996.	13.8	135
22	Strand-Exchange Nucleic Acid Circuitry with Enhanced Thermo-and Structure- Buffering Abilities Turns Gene Diagnostics Ultra-Reliable and Environmental Compatible. Scientific Reports, 2016, 6, 36605.	3.3	16
23	Spatial organization based reciprocal switching of enzyme-free nucleic acid circuits. Chemical Communications, 2016, 52, 13043-13046.	4.1	9
24	Engineering Signaling Aptamers That Rely on Kinetic Rather Than Equilibrium Competition. Analytical Chemistry, 2016, 88, 2250-2257.	6.5	16
25	A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers. Scientific Reports, 2015, 5, 11039.	3.3	66
26	Robust Strand Exchange Reactions for the Sequence-Specific, Real-Time Detection of Nucleic Acid Amplicons. Analytical Chemistry, 2015, 87, 3314-3320.	6.5	128
27	Mismatches Improve the Performance of Strandâ€Displacement Nucleic Acid Circuits. Angewandte Chemie - International Edition, 2014, 53, 1845-1848.	13.8	164
28	"Fitting―Makes "Sensing―Simple: Label-Free Detection Strategies Based on Nucleic Acid Aptamers. Accounts of Chemical Research, 2013, 46, 203-213.	15.6	218
29	Real-Time Detection of Isothermal Amplification Reactions with Thermostable Catalytic Hairpin Assembly. Journal of the American Chemical Society, 2013, 135, 7430-7433.	13.7	243
30	DNA Detection Using Origami Paper Analytical Devices. Analytical Chemistry, 2013, 85, 9713-9720.	6.5	109
31	Analytical potential of gold nanoparticles in functional aptamer-based biosensors. , 2013, , 85-106.		0
32	Coupling Two Different Nucleic Acid Circuits in an Enzyme-Free Amplifier. Molecules, 2012, 17, 13211-13220.	3.8	23
33	Probing Spatial Organization of DNA Strands Using Enzyme-Free Hairpin Assembly Circuits. Journal of the American Chemical Society, 2012, 134, 13918-13921.	13.7	217
34	Adapting Enzyme-Free DNA Circuits to the Detection of Loop-Mediated Isothermal Amplification Reactions. Analytical Chemistry, 2012, 84, 8371-8377.	6.5	90
35	DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform. Lab on A Chip, 2012, 12, 2951.	6.0	80
36	A fully-electronic charge-based DNA sequencing CMOS biochip. , 2012, , .		16

3

Bingling Li

#	Article	IF	CITATIONS
37	G-Quadruplex-based DNAzyme for colorimetric detection ofcocaine: Using magnetic nanoparticles as the separation and amplification element. Analyst, The, 2011, 136, 493-497.	3.5	99
38	Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Research, 2011, 39, e110-e110.	14.5	438
39	Homogeneous Analysis: Labelâ€Free and Substrateâ€Free Aptasensors. Chemistry - an Asian Journal, 2010, 5, 1262-1272.	3.3	29
40	Analytical potential of gold nanoparticles in functional aptamer-based biosensors. Bioanalytical Reviews, 2010, 1, 187-208.	0.2	31
41	Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination. Biosensors and Bioelectronics, 2010, 25, 1902-1907.	10.1	70
42	Solid-State Probe Based Electrochemical Aptasensor for Cocaine: A Potentially Convenient, Sensitive, Repeatable, and Integrated Sensing Platform for Drugs. Analytical Chemistry, 2010, 82, 1556-1563.	6.5	139
43	Potassium-sensitive G-quadruplexDNA for sensitive visible potassium detection. Analyst, The, 2010, 135, 71-75.	3.5	80
44	Aptamer-Controlled Biofuel Cells in Logic Systems and Used as Self-Powered and Intelligent Logic Aptasensors. Journal of the American Chemical Society, 2010, 132, 2172-2174.	13.7	130
45	Carbon nanotube–DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(ii) ion. Chemical Communications, 2010, 46, 1476.	4.1	276
46	An IMP-Reset gate-based reusable and self-powered "smart―logic aptasensor on a microfluidic biofuel cell. Lab on A Chip, 2010, 10, 2932.	6.0	34
47	DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions. Analytica Chimica Acta, 2009, 644, 78-82.	5.4	136
48	Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor. Biosensors and Bioelectronics, 2009, 24, 1979-1983.	10.1	73
49	Investigation of 3,3′,5,5′-tetramethylbenzidine as colorimetric substrate for a peroxidatic DNAzyme. Analytica Chimica Acta, 2009, 651, 234-240.	5.4	96
50	Flourescent Switch Constructed Based on Hemin-Sensitive Anionic Conjugated Polymer and Its Applications in DNA-Related Sensors. Analytical Chemistry, 2009, 81, 3544-3550.	6.5	34
51	G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. Chemical Communications, 2009, , 3551.	4.1	186
52	Colorimetric recognition of the coralyne–poly(dA) interaction using unmodified gold nanoparticle probes, and further detection of coralyne based upon this recognition system. Analyst, The, 2009, 134, 1647.	3.5	38
53	Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosensors and Bioelectronics, 2008, 24, 442-447.	10.1	164
54	Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosensors and Bioelectronics, 2008, 23, 965-970.	10.1	117

Bingling Li

#	Article	IF	CITATIONS
55	Ionic liquids supported growth of highly ordered microdroplets induced by fluidic leakage at poly(dimethylsiloxane) interfaces. Analytica Chimica Acta, 2008, 625, 35-40.	5.4	2
56	The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes. Electrochemistry Communications, 2008, 10, 859-863.	4.7	131
57	[Ru(bpy) ₂ (dcbpy)NHS] Labeling/Aptamerâ€Based Biosensor for the Detection of Lysozyme by Increasing Sensitivity with Gold Nanoparticle Amplification. Chemistry - an Asian Journal, 2008, 3, 1935-1941.	3.3	48
58	DNAzyme-based colorimetric sensing of lead (Pb ²⁺) using unmodified gold nanoparticle probes. Nanotechnology, 2008, 19, 095501.	2.6	202
59	Nanoscale-enhanced Ru(bpy)32+ electrochemiluminescence labels and related aptamer-based biosensing system. Analyst, The, 2008, 133, 1209.	3.5	36
60	Multifunctional Label-Free Electrochemical Biosensor Based on an Integrated Aptamer. Analytical Chemistry, 2008, 80, 5110-5117.	6.5	186
61	Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. Chemical Communications, 2007, , 73-75.	4.1	116
62	Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chemical Communications, 2007, , 3735.	4.1	442
63	Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules. Chemical Communications, 2007, , 3780.	4.1	71
64	Nucleobaseâ^'Metal Hybrid Materials:Â Preparation of Submicrometer-Scale, Spherical Colloidal Particles of Adenineâ^'Gold(III) via a Supramolecular Hierarchical Self-Assembly Approach. Chemistry of Materials, 2007, 19, 2987-2993.	6.7	109
65	SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chemical Communications, 2007, , 5220.	4.1	145
66	Adaptive Recognition of Small Molecules by Nucleic Acid Aptamers through a Label-Free Approach. Chemistry - A European Journal, 2007, 13, 6718-6723.	3.3	51
67	Ionic Liquids as Selectors for the Enhanced Detection of Proteins. Chemistry - A European Journal, 2007, 13, 8516-8521.	3.3	38
68	CE with electrochemical detection for investigation of labelâ€free recognition of amino acid amides by guanineâ€rich DNA aptamers. Electrophoresis, 2007, 28, 3122-3128.	2.4	8
69	Aptamer-based label-free method for hemin recognition and DNA assay by capillary electrophoresis with chemiluminescence detection. Analytical and Bioanalytical Chemistry, 2007, 389, 887-893.	3.7	54
70	Strategy for Use of Smart Routes to Prepare Label-Free Aptasensors for Bioassay Using Different Techniques. , 0, , 251-298.		1
71	CLIPON: A CRISPRâ€Enabled Strategy that Turns Commercial Pregnancy Test Strips into General Pointâ€ofâ€Need Test Devices. Angewandte Chemie, 0, , .	2.0	2