Hiroki Yamanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2683832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with aĺ′/câ€fibers and colocalization with trk receptors. Journal of Comparative Neurology, 2005, 493, 596-606.	1.6	674
2	TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. Journal of Clinical Investigation, 2005, 115, 2393-2401.	8.2	542
3	Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain, 2008, 131, 1241-1251.	7.6	232
4	VR1, but not P2X3, increases in the spared L4 DRG in rats with L5 spinal nerve ligation. Pain, 2002, 99, 111-120.	4.2	166
5	Activation of p38 MAPK in primary afferent neurons by noxious stimulation and its involvement in the development of thermal hyperalgesia. Pain, 2005, 113, 51-60.	4.2	81
6	Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats. PLoS ONE, 2016, 11, e0153375.	2.5	79
7	Protease M/neurosin mRNA is expressed in mature oligodendrocytes. Molecular Brain Research, 1999, 71, 217-224.	2.3	72
8	Negative Regulation of TRPA1 by AMPK in Primary Sensory Neurons as a Potential Mechanism of Painful Diabetic Neuropathy. Diabetes, 2018, 67, 98-109.	0.6	68
9	Peripherally Increased Artemin is a Key Regulator of TRPA1/V1 Expression in Primary Afferent Neurons. Molecular Pain, 2015, 11, s12990-015-0004.	2.1	57
10	Roles of extracellular signal-regulated protein kinases 5 in spinal microglia and primary sensory neurons for neuropathic pain. Journal of Neurochemistry, 2007, 102, 1569-1584.	3.9	50
11	Tissue plasminogen activator in primary afferents induces dorsal horn excitability and pain response after peripheral nerve injury. European Journal of Neuroscience, 2004, 19, 93-102.	2.6	49
12	Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain. Glia, 2010, 58, 599-610.	4.9	48
13	Noxious cold stimulation induces mitogen-activated protein kinase activation in transient receptor potential (TRP) channels TRPA1- and TRPM8-containing small sensory neurons. Neuroscience, 2006, 140, 1337-1348.	2.3	44
14	Microglial TNFα Induces COX2 and PGI2 Synthase Expression in Spinal Endothelial Cells during Neuropathic Pain. ENeuro, 2017, 4, ENEURO.0064-17.2017.	1.9	42
15	Tissue type plasminogen activator induced in rat dorsal horn astrocytes contributes to mechanical hypersensitivity following dorsal root injury. Glia, 2007, 55, 595-603.	4.9	37
16	Induction of plasminogen activator inhibitor-1 and -2 in dorsal root ganglion neurons after peripheral nerve injury. Neuroscience, 2005, 132, 183-191.	2.3	36
17	Expression of Leukotriene Receptors in the Rat Dorsal Root Ganglion and the Effects on Pain Behaviors. Molecular Pain, 2010, 6, 1744-8069-6-57.	2.1	29
18	Increase of close homolog of cell adhesion molecule L1 in primary afferent by nerve injury and the contribution to neuropathic pain. Journal of Comparative Neurology, 2011, 519, 1597-1615.	1.6	28

HIROKI YAMANAKA

#	Article	IF	CITATIONS
19	Activation of fibroblast growth factor receptor by axotomy, through downstream p38 in dorsal root ganglion, contributes to neuropathic pain. Neuroscience, 2007, 150, 202-211.	2.3	22
20	Alteration of the cell adhesion molecule L1 expression in a specific subset of primary afferent neurons contributes to neuropathic pain. European Journal of Neuroscience, 2007, 25, 1097-1111.	2.6	21
21	Activation of extracellular signal-regulated protein kinases 5 in primary afferent neurons contributes to heat and cold hyperalgesia after inflammation. Journal of Neurochemistry, 2007, 102, 1614-1624.	3.9	21
22	Upregulation of calcium channel alpha-2-delta-1 subunit in dorsal horn contributes to spinal cord injury-induced tactile allodynia. Spine Journal, 2018, 18, 1062-1069.	1.3	21
23	Leukotriene Enhances NMDA-Induced Inward Currents in Dorsal Horn Neurons of the Rat Spinal Cord after Peripheral Nerve Injury. Molecular Pain, 2015, 11, s12990-015-0059.	2.1	16
24	Expression of Apc2 during mouse development. Gene Expression Patterns, 2002, 1, 107-114.	0.8	12
25	Annexin A2 in primary afferents contributes to neuropathic pain associated with tissue type plasminogen activator. Neuroscience, 2016, 314, 189-199.	2.3	10
26	Role of Rho-associated coiled-coil containing protein kinase in the spinal cord injury induced neuropathic pain. Spine Journal, 2021, 21, 343-351.	1.3	8
27	Localization of prostaglandin E2 synthases and E-prostanoid receptors in the spinal cord in a rat model of neuropathic pain. Brain Research, 2021, 1750, 147153.	2.2	8
28	<scp>R</scp> ecombinant interleukinâ€4 alleviates mechanical allodynia via injuryâ€induced interleukinâ€4 receptor alpha in spinal microglia in a rat model of neuropathic pain. Glia, 2018, 66, 1775-1787.	4.9	7
29	Changes in transient receptor potential channels in the rat geniculate ganglion after chorda tympani nerve injury. NeuroReport, 2015, 26, 856-861.	1.2	6
30	Analgesic effect of gastrin-releasing peptide in the dorsal horn. Molecular Pain, 2022, 18, 174480692211089.	2.1	6
31	Aberrant Axo-Axonic Synaptic Reorganization in the Phosphorylated L1-CAM/Calcium Channel Subunit α2δⴒ1-Containing Central Terminals of Injured c-Fibers in the Spinal Cord of a Neuropathic Pain Model. ENeuro, 2021, 8, ENEURO.0499-20.2021.	1.9	5
32	Differential expression of mGluRs in rat spinal dorsal horns and their modulatory effects on nocifensive behaviors. Molecular Pain, 2019, 15, 174480691987502.	2.1	1
33	3P-192 Induction of P2Y receptors in the spinal cord following peripheral nerve injury.(Neuroscience &) Tj ETQq1	l 0.78431 0.1	4 rgBT /Ove 0
34	Acid increases PGE ₂ in the duodenal mucosa in rats. Journal of Clinical Biochemistry and Nutrition, 2022, 70, 28-32.	1.4	0
35	Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing. , 2020, 15, e0226289.		0
36	Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing. , 2020, 15, e0226289.		0

#	Article	IF	CITATIONS
37	Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing. , 2020, 15, e0226289.		0
38	Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing. , 2020, 15, e0226289.		0