
Andrea J Britton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2683677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in longâ€ŧerm field experiments. Global Change Biology, 2012, 18, 1197-1215.	9.5	340
2	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	7.1	141
3	Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecology Letters, 2017, 20, 1534-1545.	6.4	136
4	Biodiversity gains and losses: Evidence for homogenisation of Scottish alpine vegetation. Biological Conservation, 2009, 142, 1728-1739.	4.1	115
5	Nitrogen Deposition Reduces Plant Diversity and Alters Ecosystem Functioning: Field-Scale Evidence from a Nationwide Survey of UK Heathlands. PLoS ONE, 2013, 8, e59031.	2.5	93
6	The Role of Nitrogen Deposition in Widespread Plant Community Change Across Semi-natural Habitats. Ecosystems, 2014, 17, 864-877.	3.4	86
7	Interactive effects of nitrogen deposition, fire and grazing on diversity and composition of low-alpine prostrate Calluna vulgaris heathland. Journal of Applied Ecology, 2006, 44, 125-135.	4.0	72
8	Impacts of climate, management and nitrogen deposition on the dynamics of lowland heathland. Journal of Vegetation Science, 2001, 12, 797-806.	2.2	45
9	Title is missing!. Plant Ecology, 2003, 166, 93-105.	1.6	40
10	Nitrogen deposition enhances moss growth, but leads to an overall decline in habitat condition of mountain mossâ€sedge heath. Global Change Biology, 2012, 18, 290-300.	9.5	40
11	Comparison of techniques to increase Calluna vulgaris cover on heathland invaded by grasses in Breckland, south east England. Biological Conservation, 2000, 95, 227-232.	4.1	36
12	Forty years of change in Scottish grassland vegetation: Increased richness, decreased diversity and increased dominance. Biological Conservation, 2017, 212, 327-336.	4.1	33
13	Impacts of grazing on montane heath vegetation in Wales and implications for the restoration of montane areas. Biological Conservation, 2005, 125, 515-524.	4.1	32
14	Interactive effects of nitrogen deposition and fire on plant and soil chemistry in an alpine heathland. Environmental Pollution, 2008, 156, 409-416.	7.5	32
15	Climate, pollution and grazing drive longâ€ŧerm change in moorland habitats. Applied Vegetation Science, 2017, 20, 194-203.	1.9	29
16	Nitrogen deposition drives loss of moss cover in alpine moss–sedge heath via lowered CÂ:ÂN ratio and accelerated decomposition. New Phytologist, 2018, 218, 470-478.	7.3	29
17	Determinants of community compositional change are equally affected by global change. Ecology Letters, 2021, 24, 1892-1904.	6.4	27
18	Growth responses of low-alpine dwarf-shrub heath species to nitrogen deposition and management. Environmental Pollution, 2008, 153, 564-573.	7.5	26

Andrea J Britton

#	Article	IF	CITATIONS
19	Relative importance of local- and large-scale drivers of alpine soil microarthropod communities. Oecologia, 2016, 182, 913-924.	2.0	25
20	NP stoichiometry of low-alpine heathland: Usefulness for bio-monitoring and prediction of pollution impacts. Biological Conservation, 2007, 138, 100-108.	4.1	24
21	Terricolous alpine lichens are sensitive to both load and concentration of applied nitrogen and have potential as bioindicators of nitrogen deposition. Environmental Pollution, 2010, 158, 1296-1302.	7.5	23
22	A comparison of regeneration dynamics following gap creation at two geographically contrasting heathland sites. Journal of Applied Ecology, 2000, 37, 832-844.	4.0	22
23	Metrics for evaluating the ecological benefits of decreased nitrogen deposition. Biological Conservation, 2017, 212, 454-463.	4.1	22
24	Landscape-scale vegetation patterns influence small-scale grazing impacts. Biological Conservation, 2015, 192, 218-225.	4.1	20
25	Interactive Effects of N Deposition, Land Management and Weather Patterns on Soil Solution Chemistry in a Scottish Alpine Heath. Ecosystems, 2010, 13, 696-711.	3.4	18
26	An integrated assessment of ecosystem carbon pools and fluxes across an oceanic alpine toposequence. Plant and Soil, 2011, 345, 287-302.	3.7	18
27	Controls on soil solution nitrogen along an altitudinal gradient in the Scottish uplands. Science of the Total Environment, 2012, 431, 100-108.	8.0	18
28	The relative importance of nitrogen deposition as a driver of Racomitrium heath species composition and richness across Europe. Biological Conservation, 2014, 171, 224-231.	4.1	18
29	Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs. New Phytologist, 2011, 190, 740-749.	7.3	17
30	Pollution and climate change drive long-term change in Scottish wetland vegetation composition. Biological Conservation, 2017, 210, 72-79.	4.1	17
31	Tiny niches and translocations: The challenge of identifying suitable recipient sites for small and immobile species. Journal of Applied Ecology, 2018, 55, 621-630.	4.0	15
32	What is the most ecologically-meaningful metric of nitrogen deposition?. Environmental Pollution, 2019, 247, 319-331.	7.5	15
33	Nitrogen deposition, vegetation burning and climate warming act independently on microbial community structure and enzyme activity associated with decomposing litter in lowâ€alpine heath. Global Change Biology, 2010, 16, 3120-3132.	9.5	14
34	Grazing exclusion and phosphorus addition as potential local management options for the restoration of alpine moss-sedge heath. Biological Conservation, 2012, 153, 17-24.	4.1	14
35	Legacy effects of nitrogen and phosphorus additions on vegetation and carbon stocks of upland heaths. New Phytologist, 2020, 228, 226-237.	7.3	14
36	Conservation problems on Breckland heaths: from theory to practice. Biological Conservation, 2000, 95, 143-151.	4.1	13

Andrea J Britton

#	Article	IF	CITATIONS
37	Assessing the recovery potential of alpine moss–sedge heath: Reciprocal transplants along a nitrogen deposition gradient. Environmental Pollution, 2011, 159, 140-147.	7.5	10
38	The potential for modelling peatland habitat condition in Scotland using long-term MODIS data. Science of the Total Environment, 2019, 660, 429-442.	8.0	10
39	Developing monitoring protocols for cost-effective surveillance of lichens. Lichenologist, 2014, 46, 471-482.	0.8	9
40	Impacts of nitrogen deposition on carbon and nitrogen cycling in alpine Racomitrium heath in the UK and prospects for recovery. Environmental Pollution, 2019, 254, 112986.	7.5	9
41	Additive impacts of nitrogen deposition and grazing on a mountain moss-sedge heath. Botanica Helvetica, 2010, 120, 129-137.	1.1	8
42	Disparities between plant community responses to nitrogen deposition and critical loads in UK semi-natural habitats. Atmospheric Environment, 2020, 239, 117478.	4.1	7
43	Soil microarthropod-plant community relationships in alpine moss- sedge heath. Applied Soil Ecology, 2017, 111, 1-8.	4.3	5
44	Long-term vegetation change in Scotland's native forests. Biological Conservation, 2019, 235, 136-146.	4.1	4
45	Who Put the N in PristiNe. Mountain Research and Development, 2008, 28, 210-215.	1.0	3
46	Heather Moorland Vegetation and Air Pollution: A Comparison and Synthesis of Three National Gradient Studies. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	3
47	Habitat impact assessment detects spatially driven patterns of grazing impacts in habitat mosaics but overestimates damage. Journal for Nature Conservation, 2018, 45, 20-29.	1.8	3
48	Hemispheric- and Continental-Scale Patterns of Similarity in Mountain Tundra. Annals of the American Association of Geographers, 2020, 110, 1005-1021.	2.2	2