Sheena D'Arcy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/26835/publications.pdf

Version: 2024-02-01

		759233	552781
31	809	12	26
papers	citations	h-index	g-index
35	35	35	1385
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrogen-deuterium exchange mass spectrometry of Mtr4 with diverse RNAs reveals substrate-dependent dynamics and interfaces in the arch. Nucleic Acids Research, 2022, 50, 4042-4053.	14.5	5
2	Using hydrogen-deuterium exchange mass spectrometry to characterize Mtr4 interactions with RNA. Methods in Enzymology, 2022, , 475-516.	1.0	1
3	Leveraging intrinsic flexibility to engineer enhanced enzyme catalytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
4	HD-eXplosion: visualization of hydrogen–deuterium exchange data as chiclet and volcano plots with statistical filtering. Bioinformatics, 2021, 37, 1926-1927.	4.1	19
5	Identification and physical characterization of a spontaneous mutation of the tobacco mosaic virus in the laboratory environment. Scientific Reports, 2021, 11, 15109.	3.3	5
6	An activity-based fluorescent sensor for the detection of the phenol sulfotransferase SULT1A1 in living cells. RSC Chemical Biology, 2021, 2, 830-834.	4.1	5
7	FACT caught in the act of manipulating the nucleosome. Nature, 2020, 577, 426-431.	27.8	160
8	Conformational Dynamics Contribute to Substrate Selectivity and Catalysis in Human Kynureninase. ACS Chemical Biology, 2020, 15, 3159-3166.	3.4	6
9	Proposed Allosteric Inhibitors Bind to the ATP Site of CK2α. Journal of Medicinal Chemistry, 2020, 63, 12786-12798.	6.4	12
10	Comprehensive analysis of histone-binding proteins with multi-angle light scattering. Methods, 2020, 184, 93-101.	3.8	8
11	Stoichiometry of Rtt109 complexes with Vps75 and histones H3-H4. Life Science Alliance, 2020, 3, e202000771.	2.8	3
12	IroT/MavN Is a <i>Legionella</i> Transmembrane Fe(II) Transporter: Metal Selectivity and Translocation Kinetics Revealed by <i>in Vitro</i> Real-Time Transport. Biochemistry, 2019, 58, 4337-4342.	2.5	14
13	Characterization of <i>Caenorhabditis elegans</i> Nucleosome Assembly Protein 1 Uncovers the Role of Acidic Tails in Histone Binding. Biochemistry, 2019, 58, 108-113.	2.5	11
14	Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone. ELife, 2019, 8, .	6.0	47
15	Regulating the Uptake of Viral Nanoparticles in Macrophage and Cancer Cells via a pH Switch. Molecular Pharmaceutics, 2018, 15, 2984-2990.	4.6	11
16	Stoichiometry of Multiâ€protein Complexes containing RTT109, Vps75, and Histone H3–H4. FASEB Journal, 2018, 32, 524.13.	0.5	0
17	Dynamics of Lâ€Kynureninase Orthologs during Catalysis. FASEB Journal, 2018, 32, 527.13.	0.5	0
18	Comparing the Solution Conformation and Activinâ€binding of Follistatin Isoforms. FASEB Journal, 2018, 32, 659.5.	0.5	0

#	Article	IF	CITATIONS
19	Thermoplasmonics: Molecular Hyperthermia: Spatiotemporal Protein Unfolding and Inactivation by Nanosecond Plasmonic Heating (Small $36/2017$). Small, $2017, 13, .$	10.0	0
20	Molecular Hyperthermia: Spatiotemporal Protein Unfolding and Inactivation by Nanosecond Plasmonic Heating. Small, 2017, 13, 1700841.	10.0	34
21	Fluorescent Functionalization across Quaternary Structure in a Virus-like Particle. Bioconjugate Chemistry, 2017, 28, 2277-2283.	3.6	17
22	Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes. Molecular and Cellular Biology, 2016, 36, 2262-2271.	2.3	13
23	Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus. Molecular and Cellular Biology, 2016, 36, 1287-1296.	2.3	24
24	The right place at the right time: chaperoning core histone variants. EMBO Reports, 2015, 16, 1454-1466.	4.5	55
25	Chaperone Nap1 Shields Histone Surfaces Used in a Nucleosome and Can Put H2A-H2B in an Unconventional Tetrameric Form. Molecular Cell, 2013, 51, 662-677.	9.7	69
26	Fluorescence strategies for high-throughput quantification of protein interactions. Nucleic Acids Research, 2012, 40, e33-e33.	14.5	53
27	Towards a mechanism for histone chaperones. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 211-221.	1.9	64
28	Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take?. Current Opinion in Structural Biology, 2011, 21, 728-734.	5.7	37
29	Defining the Molecular Basis of BubR1 Kinetochore Interactions and APC/C-CDC20 Inhibition. Journal of Biological Chemistry, 2010, 285, 14764-14776.	3.4	37
30	The Crystal Structure of the N-Terminal Region of BUB1 Provides Insight into the Mechanism of BUB1 Recruitment to Kinetochores. Structure, 2009, 17, 105-116.	3.3	45
31	A Positive Spin on the Centromere. Cell, 2009, 138, 22-24.	28.9	8