
David C Gershlick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2682933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clathrin adaptor AP-1–mediated Golgi export of amyloid precursor protein is crucial for the production of neurotoxic amyloid fragments. Journal of Biological Chemistry, 2022, 298, 102172.	3.4	4
2	SNX19 restricts endolysosome motility through contacts with the endoplasmic reticulum. Nature Communications, 2021, 12, 4552.	12.8	33
3	Editorial: Energy Requirements in Membrane Trafficking. Frontiers in Cell and Developmental Biology, 2021, 9, 750633.	3.7	0
4	Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biology, 2021, 19, e3001480.	5.6	48
5	The Parkinson's Disease Protein LRRK2 Interacts with the GARP Complex to Promote Retrograde Transport to the trans-Golgi Network. Cell Reports, 2020, 31, 107614.	6.4	49
6	Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Seminars in Cell and Developmental Biology, 2020, 107, 112-125.	5.0	78
7	The autophagy protein ATG9A promotes HIV-1 infectivity. Retrovirology, 2019, 16, 18.	2.0	10
8	A neurodevelopmental disorder caused by mutations in the VPS51 subunit of the GARP and EARP complexes. Human Molecular Genetics, 2019, 28, 1548-1560.	2.9	38
9	Segregation in the Golgi complex precedes export of endolysosomal proteins in distinct transport carriers. Journal of Cell Biology, 2017, 216, 4141-4151.	5.2	78
10	Molecular mechanism for the subversion of the retromer coat by the <i>Legionella</i> effector RidL. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11151-E11160.	7.1	42
11	Endosomal Trafficking: Retromer and Retriever AreÂRelatives in Recycling. Current Biology, 2017, 27, R1233-R1236.	3.9	11
12	Physical Removal of the Midbody Remnant from Polarised Epithelial Cells Using Take-Up by Suction Pressure (TUSP). Bio-protocol, 2017, 7, e2244.	0.4	2
13	Structural Mechanism for Cargo Recognition by the Retromer Complex. Cell, 2016, 167, 1623-1635.e14.	28.9	172
14	TSSC1 is novel component of the endosomal retrieval machinery. Molecular Biology of the Cell, 2016, 27, 2867-2878.	2.1	27
15	Novel role for the midbody in primary ciliogenesis by polarized epithelial cells. Journal of Cell Biology, 2016, 214, 259-273.	5.2	74
16	Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. International Review of Cell and Molecular Biology, 2015, 318, 159-202.	3.2	14
17	Routes to and from the plasma membrane: bulk flow versus signal mediated endocytosis. Plant Signaling and Behavior, 2014, 9, e972813.	2.4	10
18	Golgi-Dependent Transport of Vacuolar Sorting Receptors Is Regulated by COPII, AP1, and AP4 Protein Complexes in Tobacco Â. Plant Cell, 2014, 26, 1308-1329.	6.6	39

DAVID C GERSHLICK

#	Article	IF	CITATIONS
19	Going Forward with Retromer. Developmental Cell, 2014, 29, 3-4.	7.0	4
20	Mechanisms and Concepts Paving the Way towards a Complete Transport Cycle of Plant Vacuolar Sorting Receptors. Plant Cell, 2012, 24, 1714-1732.	6.6	61
21	Evidence for Sequential Action of <scp>Rab</scp> 5 and <scp>Rab</scp> 7 <scp>GTP</scp> ases in Prevacuolar Organelle Partitioning. Traffic, 2012, 13, 338-354.	2.7	78
22	A Recycling-Defective Vacuolar Sorting Receptor Reveals an Intermediate Compartment Situated between Prevacuoles and Vacuoles in Tobacco. Plant Cell, 2011, 22, 3992-4008.	6.6	77