
Roger K Prichard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2682470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of rapid in vitro colorimetric enzymatic activity assay to differentiate macrocyclic lactone susceptible and resistant Dirofilaria immitis isolates. Veterinary Parasitology, 2022, 304, 109696.	1.8	3
2	Development of emodepside as a possible adulticidal treatment for human onchocerciasis—The fruit of a successful industrial–academic collaboration. PLoS Pathogens, 2021, 17, e1009682.	4.7	29
3	Concern for Dirofilaria immitis and Macrocyclic Lactone Loss of Efficacy: Current Situation in the USA and Europe, and Future Scenarios. Pathogens, 2021, 10, 1323.	2.8	11
4	Macrocyclic lactone resistance in Dirofilaria immitis: risks for prevention of heartworm disease. International Journal for Parasitology, 2021, 51, 1121-1132.	3.1	24
5	The development of the dog heartworm is highly sensitive to sterols which activate the orthologue of the nuclear receptor DAF-12. Scientific Reports, 2020, 10, 11207.	3.3	10
6	Model of Success: World Association for the Advancement of Veterinary Parasitology African Foundation (1997–2019). Journal of the South African Veterinary Association, 2020, 91, e1-e6.	0.6	0
7	Developmental regulation of Dirofilaria immitis microfilariae and evaluation of ecdysone signaling pathway transcript level using droplet digital PCR. Parasites and Vectors, 2020, 13, 614.	2.5	5
8	Challenges and opportunities for the adoption of molecular diagnostics for anthelmintic resistance. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 264-273.	3.4	44
9	Piloting a surveillance system to monitor the global patterns of drug efficacy and the emergence of anthelmintic resistance in soil-transmitted helminth control programs: a Starworms study protocol. Gates Open Research, 2020, 4, 28.	1.1	17
10	Comparison of four DNA extraction and three preservation protocols for the molecular detection and quantification of soil-transmitted helminths in stool. PLoS Neglected Tropical Diseases, 2019, 13, e0007778.	3.0	37
11	Perspectives on the utility of moxidectin for the control of parasitic nematodes in the face of developing anthelmintic resistance. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 10, 69-83.	3.4	91
12	G-protein-coupled receptor genes of Dirofilaria immitis. Molecular and Biochemical Parasitology, 2018, 222, 6-13.	1.1	3
13	The optimal timing of post-treatment sampling for the assessment of anthelminthic drug efficacy against Ascaris infections in humans. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 67-69.	3.4	21
14	Structural model, functional modulation by ivermectin and tissue localization of Haemonchus contortus P-glycoprotein-13. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 145-157.	3.4	17
15	Comprehensive evaluation of stool-based diagnostic methods and benzimidazole resistance markers to assess drug efficacy and detect the emergence of anthelmintic resistance: A Starworms study protocol. PLoS Neglected Tropical Diseases, 2018, 12, e0006912.	3.0	30
16	Clinical validation of molecular markers of macrocyclic lactone resistance in Dirofilaria immitis. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 596-606.	3.4	41
17	Polymorphism in ABC transporter genes of Dirofilaria immitis. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 227-235.	3.4	5
18	Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity. PLoS Neglected Tropical Diseases, 2017, 11, e0005816.	3.0	87

#	Article	IF	CITATIONS
19	Isothermal diagnostic assays for the detection of soil-transmitted helminths based on the SmartAmp2 method. Parasites and Vectors, 2017, 10, 496.	2.5	21
20	Genetic profiles of ten Dirofilaria immitis isolates susceptible or resistant to macrocyclic lactone heartworm preventives. Parasites and Vectors, 2017, 10, 504.	2.5	33
21	Dirofilaria immitis JYD-34 isolate: whole genome analysis. Parasites and Vectors, 2017, 10, 494.	2.5	9
22	Rapid Genotyping of β-tubulin Polymorphisms in Trichuris trichiura and Ascaris lumbricoides. PLoS Neglected Tropical Diseases, 2017, 11, e0005205.	3.0	24
23	Drug Resistance in Nematodes. , 2017, , 689-704.		0
24	Isothermal Diagnostic Assays for Monitoring Single Nucleotide Polymorphisms in Necator americanus Associated with Benzimidazole Drug Resistance. PLoS Neglected Tropical Diseases, 2016, 10, e0005113.	3.0	30
25	Interaction of macrocyclic lactones with a Dirofilaria immitis P-glycoprotein. International Journal for Parasitology, 2016, 46, 631-640.	3.1	20
26	In silico analysis of the binding of anthelmintics to Caenorhabditis elegans P-glycoprotein 1. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 299-313.	3.4	25
27	Polymorphism in ion channel genes of Dirofilaria immitis : Relevant knowledge for future anthelmintic drug design. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 343-355.	3.4	5
28	ABC-B transporter genes in Dirofilaria immitis. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 116-124.	3.4	16
29	Characterisation of P-glycoprotein-9.1 in Haemonchus contortus. Parasites and Vectors, 2016, 9, 52.	2.5	32
30	lvermectin exhibits potent anti-mitotic activity. Veterinary Parasitology, 2016, 226, 1-4.	1.8	22
31	Ivermectin binds to Haemonchus contortus tubulins and promotes stability of microtubules. International Journal for Parasitology, 2015, 45, 647-654.	3.1	18
32	Characterization of Haemonchus contortus P-glycoprotein-16 and its interaction with the macrocyclic lactone anthelmintics. Molecular and Biochemical Parasitology, 2015, 204, 11-15.	1.1	24
33	Macrocyclic lactone resistance in Dirofilaria immitis: Failure of heartworm preventives and investigation of genetic markers for resistance. Veterinary Parasitology, 2015, 210, 167-178.	1.8	122
34	Macrocyclic lactones and their relationship to the SNPs related to benzimidazole resistance. Molecular and Biochemical Parasitology, 2015, 201, 128-134.	1.1	13
35	Haemonchus contortus P-glycoprotein-2: in situ localisation and characterisation of macrocyclic lactone transport. International Journal for Parasitology, 2015, 45, 85-93.	3.1	37
36	Establishment of macrocyclic lactone resistant Dirofilaria immitis isolates in experimentally infected laboratory dogs. Parasites and Vectors, 2014, 7, 494.	2.5	75

Roger K Prichard

#	Article	IF	CITATIONS
37	Reproductive Status of Onchocerca volvulus after Ivermectin Treatment in an Ivermectin-NaÃ ⁻ ve and a Frequently Treated Population from Cameroon. PLoS Neglected Tropical Diseases, 2014, 8, e2824.	3.0	50
38	Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 164-184.	3.4	149
39	A dyf-7 haplotype causes sensory neuron defects and is associated with macrocyclic lactone resistance worldwide in the nematode parasite Haemonchus contortus. International Journal for Parasitology, 2014, 44, 1063-1071.	3.1	45
40	Reaching the London Declaration on Neglected Tropical Diseases Goals for Onchocerciasis: An Economic Evaluation of Increasing the Frequency of Ivermectin Treatment in Africa. Clinical Infectious Diseases, 2014, 59, 923-932.	5.8	82
41	Haemonchus contortus microtubules are cold resistant. Molecular and Biochemical Parasitology, 2014, 193, 20-22.	1.1	4
42	Novel assay for the detection and monitoring of levamisole resistance in Haemonchus contortus. International Journal for Parasitology, 2014, 44, 235-241.	3.1	30
43	Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: Implications for control of drug resistant parasitic nematodes. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 143-151.	3.4	36
44	Efficiency of a genetic test to detect benzimidazole resistant Haemonchus contortus nematodes in sheep farms in Quebec, Canada. Parasitology International, 2013, 62, 464-470.	1.3	35
45	Inhibition of P-glycoprotein enhances sensitivity of Caenorhabditis elegans to ivermectin. Veterinary Parasitology, 2013, 191, 264-275.	1.8	71
46	Uncertainty Surrounding Projections of the Long-Term Impact of Ivermectin Treatment on Human Onchocerciasis. PLoS Neglected Tropical Diseases, 2013, 7, e2169.	3.0	50
47	Association between Response to Albendazole Treatment and β-Tubulin Genotype Frequencies in Soil-transmitted Helminths. PLoS Neglected Tropical Diseases, 2013, 7, e2247.	3.0	131
48	Dynamics of Onchocerca volvulus Microfilarial Densities after Ivermectin Treatment in an Ivermectin-naìve and a Multiply Treated Population from Cameroon. PLoS Neglected Tropical Diseases, 2013, 7, e2084.	3.0	43
49	Molecular and Biological Diagnostic Tests for Monitoring Benzimidazole Resistance in Human Soil-Transmitted Helminths. American Journal of Tropical Medicine and Hygiene, 2013, 88, 1052-1061.	1.4	65
50	A Research Agenda for Helminth Diseases of Humans: Towards Control and Elimination. PLoS Neglected Tropical Diseases, 2012, 6, e1547.	3.0	76
51	A Research Agenda for Helminth Diseases of Humans: Intervention for Control and Elimination. PLoS Neglected Tropical Diseases, 2012, 6, e1549.	3.0	163
52	A Research Agenda for Helminth Diseases of Humans: Health Research and Capacity Building in Disease-Endemic Countries for Helminthiases Control. PLoS Neglected Tropical Diseases, 2012, 6, e1602.	3.0	19
53	A Research Agenda for Helminth Diseases of Humans: Modelling for Control and Elimination. PLoS Neglected Tropical Diseases, 2012, 6, e1548.	3.0	85
54	Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (â^'/â^') Mice and Effects on Mammalian GABA(A) Channel Activity. PLoS Neglected Tropical Diseases, 2012, 6, e1883.	3.0	61

#	Article	IF	CITATIONS
55	A Research Agenda for Helminth Diseases of Humans: The Problem of Helminthiases. PLoS Neglected Tropical Diseases, 2012, 6, e1582.	3.0	250
56	A Research Agenda for Helminth Diseases of Humans: Diagnostics for Control and Elimination Programmes. PLoS Neglected Tropical Diseases, 2012, 6, e1601.	3.0	138
57	Human soil-transmitted helminths. Current Opinion in Infectious Diseases, 2012, 25, 703-708.	3.1	49
58	P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: Prospects for reversing transport-dependent anthelmintic resistance. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 58-75.	3.4	153
59	Genotypic analysis of β-tubulin in Onchocerca volvulus from communities and individuals showing poor parasitological response to ivermectin treatment. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 20-28.	3.4	30
60	Moxidectin and the avermectins: Consanguinity but not identity. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 134-153.	3.4	222
61	The role of several ABC transporter genes in ivermectin resistance in Caenorhabditis elegans. Veterinary Parasitology, 2012, 190, 519-529.	1.8	30
62	Single nucleotide polymorphisms in β-tubulin selected in Onchocerca volvulus following repeated ivermectin treatment: Possible indication of resistance selection. Molecular and Biochemical Parasitology, 2012, 185, 10-18.	1.1	26
63	Relationship between increased albendazole systemic exposure and changes in single nucleotide polymorphisms on the β-tubulin isotype 1 encoding gene in Haemonchus contortus. Veterinary Parasitology, 2012, 186, 344-349.	1.8	72
64	Evidence for Macrocyclic Lactone Anthelmintic Resistance in Dirofilaria immitis. Topics in Companion Animal Medicine, 2011, 26, 186-192.	0.9	64
65	Is anthelmintic resistance a concern for the control of human soil-transmitted helminths?. International Journal for Parasitology: Drugs and Drug Resistance, 2011, 1, 14-27.	3.4	211
66	Macrocyclic lactone resistance in Dirofilaria immitis. Veterinary Parasitology, 2011, 181, 388-392.	1.8	80
67	Macrocyclic lactone resistance in Dirofilaria immitis by Bourguinat et al Veterinary Parasitology, 2011, 182, 380-381.	1.8	0
68	Genetic polymorphism in Dirofilaria immitis. Veterinary Parasitology, 2011, 176, 368-373.	1.8	39
69	Correlation between loss of efficacy of macrocyclic lactone heartworm anthelmintics and P-glycoprotein genotype. Veterinary Parasitology, 2011, 176, 374-381.	1.8	75
70	Phenotypic Evidence of Emerging Ivermectin Resistance in Onchocerca volvulus. PLoS Neglected Tropical Diseases, 2011, 5, e998.	3.0	251
71	Unresolved issues in anthelmintic pharmacology for helminthiases of humans. International Journal for Parasitology, 2010, 40, 1-13.	3.1	199
72	Analysis of the mdr-1 Gene in Patients Co-Infected with Onchocerca volvulus and Loa loa Who Experienced a Post-Ivermectin Serious Adverse Event. American Journal of Tropical Medicine and Hygiene, 2010, 83, 28-32.	1.4	52

#	Article	IF	CITATIONS
73	Identifying sub-optimal responses to ivermectin in the treatment of River Blindness. Proceedings of the United States of America, 2009, 106, 16716-16721.	7.1	77
74	A dopamine-gated ion channel (HcGGR3*) from Haemonchus contortus is expressed in the cervical papillae and is associated with macrocyclic lactone resistance. Molecular and Biochemical Parasitology, 2009, 166, 54-61.	1.1	47
75	A comparison of the effects of ivermectin and moxidectin on the nematode Caenorhabditis elegans. Veterinary Parasitology, 2009, 165, 96-108.	1.8	57
76	Drug Resistance in Nematodes. , 2009, , 621-628.		3
77	Onchocerciasis Control: Vision for the Future from a Ghanian perspective. Parasites and Vectors, 2009, 2, 7.	2.5	50
78	Assays to Detect β-Tubulin Codon 200 Polymorphism in Trichuris trichiura and Ascaris lumbricoides. PLoS Neglected Tropical Diseases, 2009, 3, e397.	3.0	115
79	P-glycoprotein selection in strains of Haemonchus contortus resistant to benzimidazoles. Veterinary Parasitology, 2008, 152, 101-107.	1.8	65
80	Fresh hope to can the worms. Nature, 2008, 452, 157-158.	27.8	31
81	ABC transporter modulation: a strategy to enhance the activity of macrocyclic lactone anthelmintics. Trends in Parasitology, 2008, 24, 293-298.	3.3	85
82	P-glycoprotein-like protein, a possible genetic marker for ivermectin resistance selection in Onchocerca volvulus. Molecular and Biochemical Parasitology, 2008, 158, 101-111.	1.1	75
83	An Analysis of Genetic Diversity and Inbreeding in Wuchereria bancrofti: Implications for the Spread and Detection of Drug Resistance. PLoS Neglected Tropical Diseases, 2008, 2, e211.	3.0	31
84	Genetic analysis of a relationship between macrocyclic lactone and benzimidazole anthelmintic selection on Haemonchus contortus. Pharmacogenetics and Genomics, 2008, 18, 129-140.	1.5	106
85	Markers for benzimidazole resistance in human parasitic nematodes?. Parasitology, 2007, 134, 1087-1092.	1.5	58
86	Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet, The, 2007, 369, 2021-2029.	13.7	346
87	Efficacy of ivermectin against Onchocerca volvulus in Ghana – Authors' reply. Lancet, The, 2007, 370, 1124-1125.	13.7	2
88	lvermectin resistance and overview of the Consortium for Anthelmintic Resistance SNPs. Expert Opinion on Drug Discovery, 2007, 2, S41-S52.	5.0	46
89	Where next with Loa loa encephalopathy? Data are badly needed. Trends in Parasitology, 2007, 23, 237-238.	3.3	20
90	Genetic Selection of Low Fertile Onchocerca volvulus by Ivermectin Treatment. PLoS Neglected Tropical Diseases, 2007, 1, e72.	3.0	97

#	Article	IF	CITATIONS
91	Characterization of a half-size ATP-binding cassette transporter gene which may be a useful marker for ivermectin selection in Onchocerca volvulus. Molecular and Biochemical Parasitology, 2006, 145, 94-100.	1.1	38
92	Genomic organization and effects of ivermectin selection on Onchocerca volvulus P-glycoprotein. Molecular and Biochemical Parasitology, 2005, 143, 58-66.	1.1	52
93	DETECTION OF BENZIMIDAZOLE RESISTANCE–ASSOCIATED MUTATIONS IN THE FILARIAL NEMATODE WUCHERERIA BANCROFTI AND EVIDENCE FOR SELECTION BY ALBENDAZOLE AND IVERMECTIN COMBINATION TREATMENT. American Journal of Tropical Medicine and Hygiene, 2005, 73, 234-238.	1.4	140
94	Mutations in the extracellular domains of glutamate-gated chloride channel alpha3 and beta subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity. Journal of Neurochemistry, 2004, 89, 1137-1147.	3.9	123
95	Genomic organization of an avermectin receptor subunit from Haemonchus contortus and expression of its putative promoter region in Caenorhabditis elegans. Molecular and Biochemical Parasitology, 2004, 134, 267-274.	1.1	14
96	Drug resistance in veterinary helminths. Trends in Parasitology, 2004, 20, 469-476.	3.3	650
97	Selection at a Î ³ -aminobutyric acid receptor gene in Haemonchus contortus resistant to avermectins/milbemycins. Molecular and Biochemical Parasitology, 2003, 131, 137-145.	1.1	54
98	LOCALIZATION OF P-GLYCOPROTEIN mRNA IN THE TISSUES OF HAEMONCHUS CONTORTUS ADULT WORMS AND ITS RELATIVE ABUNDANCE IN DRUG-SELECTED AND SUSCEPTIBLE STRAINS. Journal of Parasitology, 2002, 88, 612-620.	0.7	33
99	A glutamate-gated chloride channel subunit from Haemonchus contortus:. Biochemical Pharmacology, 2002, 63, 1061-1068.	4.4	52
100	Study of the nematode putative GABA type-A receptor subunits: evidence for modulation by ivermectin. Journal of Neurochemistry, 2002, 83, 870-878.	3.9	114
101	Individual Expression of Recombinant α- and β-Tubulin from Haemonchus contortus: Polymerization and Drug Effects. Protein Expression and Purification, 2001, 21, 30-39.	1.3	30
102	The role of molecular biology in veterinary parasitology. Veterinary Parasitology, 2001, 98, 169-194.	1.8	33
103	Effects of the multidrug-resistance-reversing agents verapamil and CL 347,099 on the efficacy of ivermectin or moxidectin against unselected and drug-selected strains of Haemonchus contortus in jirds (Meriones unguiculatus). Parasitology Research, 1999, 85, 1007-1011.	1.6	88
104	Identification and stage-specific expression of two putative P-glycoprotein coding genes in Onchocerca volvulus. Molecular and Biochemical Parasitology, 1999, 102, 273-281.	1.1	53
105	Cloning, Sequencing, and Developmental Expression Levels of a Novel Glutamate-Gated Chloride Channel Homologue in the Parasitic NematodeHaemonchus contortus. Biochemical and Biophysical Research Communications, 1999, 254, 529-534.	2.1	38
106	Haemonchus contortus: Selection at a Glutamate-Gated Chloride Channel Gene in Ivermectin- and Moxidectin-Selected Strains. Experimental Parasitology, 1998, 90, 42-48.	1.2	143
107	Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog1Note: Nucleotide sequence data reported in this paper have been submitted to the GenBank data base with the accession number AF 003908.1. Molecular and Biochemical Parasitology, 1998, 91, 327-335.	1.1	277
108	Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus. Molecular and Biochemical Parasitology, 1998, 95, 193-201.	1.1	139

#	Article	IF	CITATIONS
109	Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochemical Pharmacology, 1997, 53, 17-25.	4.4	158
110	Anthelmintic resistance. Veterinary Parasitology, 1994, 54, 259-268.	1.8	188
111	Benzimidazoles, potent anti-mitotic drugs: Substrates for the P-glycoprotein transporter in multidrug-resistant cells. Biochemical Pharmacology, 1994, 48, 2215-2222.	4.4	47
112	Relationship between pharmacological properties and clinical efficacy of ruminant anthelmintics. Veterinary Parasitology, 1993, 49, 123-158.	1.8	108
113	Three β-tubulin cDNAs from the parasitic nematode Haemonchus contortus. Molecular and Biochemical Parasitology, 1992, 50, 295-306.	1.1	77
114	Methimazole increases the plasma concentrations of the albendazole metabolites of netobimin in sheep. Biopharmaceutics and Drug Disposition, 1992, 13, 95-103.	1.9	24