
Charles G Glabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2681440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of amyloid antibodies for Alzheimer disease – immunotherapy. Archives of Physiology and Biochemistry, 2022, 128, 1275-1282.	2.1	2
2	<i>In vitro</i> study of the mechanism of intraneuronal <i>β-</i> amyloid aggregation in Alzheimer's disease. Archives of Physiology and Biochemistry, 2022, 128, 732-739.	2.1	10
3	Conformation-dependent anti-Aβ monoclonal antibody signatures of disease status and severity in urine of women with preeclampsia. Pregnancy Hypertension, 2022, 28, 51-59.	1.4	4
4	An "epitomic―analysis of the specificity of conformation-dependent, anti-Aß amyloid monoclonal antibodies. Journal of Biological Chemistry, 2021, 296, 100168.	3.4	9
5	Inefficient quality control of ribosome stalling during APP synthesis generates CAT-tailed species that precipitate hallmarks of Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 169.	5.2	28
6	Crystal structure of a conformational antibody that binds tau oligomers and inhibits pathological seeding by extracts from donors with Alzheimer's disease. Journal of Biological Chemistry, 2020, 295, 10662-10676.	3.4	21
7	Intra- and extracellular β-amyloid overexpression via adeno-associated virus-mediated gene transfer impairs memory and synaptic plasticity in the hippocampus. Scientific Reports, 2019, 9, 15936.	3.3	12
8	Apolipoprotein E/Amyloid-β Complex Accumulates in Alzheimer Disease Cortical Synapses via Apolipoprotein E Receptors and Is Enhanced by APOE4. American Journal of Pathology, 2019, 189, 1621-1636.	3.8	35
9	Structure-based inhibitors of amyloid beta core suggest a common interface with tau. ELife, 2019, 8, .	6.0	81
10	Common fibrillar spines of amyloid-β and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. Journal of Biological Chemistry, 2018, 293, 2888-2902.	3.4	50
11	Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 11.	10.8	260
12	Epitomic Characterization of the Specificity of the Anti-Amyloid Aβ Monoclonal Antibodies 6E10 and 4G8. Journal of Alzheimer's Disease, 2018, 66, 1235-1244.	2.6	45
13	Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer's pathology. Acta Neuropathologica, 2017, 134, 769-788.	7.7	85
14	Familial Alzheimer's Disease Mutations within the Amyloid Precursor Protein Alter the Aggregation and Conformation of the Amyloid-β Peptide. Journal of Biological Chemistry, 2017, 292, 3172-3185.	3.4	123
15	Atomic structures of fibrillar segments of hIAPP suggest tightly mated \hat{I}^2 -sheets are important for cytotoxicity. ELife, 2017, 6, .	6.0	95
16	The Anti-Amyloid-Î ² Monoclonal Antibody 4G8 Recognizes a Generic Sequence-Independent Epitope Associated with α-Synuclein and Islet Amyloid Polypeptide Amyloid Fibrils. Journal of Alzheimer's Disease, 2016, 50, 517-525.	2.6	28
17	Effective anti-Alzheimer Aβ therapy involves depletion of specific Aβ oligomer subtypes. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e237.	6.0	39
18	Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. Proceedings of the National Academy of Sciences of the United States of America. 2016. 113. E4976-84.	7.1	712

CHARLES G GLABE

#	Article	IF	CITATIONS
19	Structural differences between amyloid beta oligomers. Biochemical and Biophysical Research Communications, 2016, 477, 700-705.	2.1	65
20	Synaptic Amyloid-β Oligomers Precede p-Tau and Differentiate High Pathology Control Cases. American Journal of Pathology, 2016, 186, 185-198.	3.8	94
21	Dietary DHA supplementation in an APP/PS1 transgenic rat model of AD reduces behavioral and Aβ pathology and modulates Aβ oligomerization. Neurobiology of Disease, 2015, 82, 552-560.	4.4	48
22	Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Science Translational Medicine, 2014, 6, 245ra92.	12.4	181
23	Monoclonal Antibodies against Aβ42 Fibrils Distinguish Multiple Aggregation State Polymorphisms in Vitro and in Alzheimer Disease Brain. Journal of Biological Chemistry, 2014, 289, 32131-32143.	3.4	103
24	Quantitative Imaging of Preamyloid Oligomers, a Novel Structural Abnormality, in Human Atrial Samples. Journal of Histochemistry and Cytochemistry, 2014, 62, 479-487.	2.5	13
25	Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiology of Disease, 2014, 71, 53-61.	4.4	85
26	Positron Emission Tomography Imaging of Fibrillar Parenchymal and Vascular Amyloid-β in TgCRND8 Mice. ACS Chemical Neuroscience, 2013, 4, 613-623.	3.5	21
27	Atomic View of a Toxic Amyloid Small Oligomer. Science, 2012, 335, 1228-1231.	12.6	518
28	Amyloid-β Annular Protofibrils Evade Fibrillar Fate in Alzheimer Disease Brain. Journal of Biological Chemistry, 2011, 286, 22122-22130.	3.4	127
29	Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Al ² oligomers. Molecular Neurodegeneration, 2010, 5, 57.	10.8	135
30	Annular Protofibrils Are a Structurally and Functionally Distinct Type of Amyloid Oligomer. Journal of Biological Chemistry, 2009, 284, 4230-4237.	3.4	307
31	Structural Classification of Toxic Amyloid Oligomers. Journal of Biological Chemistry, 2008, 283, 29639-29643.	3.4	716
32	Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Molecular Neurodegeneration, 2007, 2, 18.	10.8	655
33	Pore-Forming Proteins Share Structural and Functional Homology with Amyloid Oligomers. NeuroMolecular Medicine, 2007, 9, 270-275.	3.4	78
34	Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology, 2006, 66, S74-S78.	1.1	322
35	Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiology of Aging, 2006, 27, 570-575.	3.1	513
36	BIOMEDICINE: Avoiding Collateral Damage in Alzheimer's Disease Treatment. Science, 2006, 314, 602-603.	12.6	4

CHARLES G GLABE

#	Article	IF	CITATIONS
37	Conformation-dependent antibodies target diseases of protein misfolding. Trends in Biochemical Sciences, 2004, 29, 542-547.	7.5	154
38	Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science, 2003, 300, 486-489.	12.6	3,748
39	Intracellular Mechanisms of Amyloid Accumulation and Pathogenesis in Alzheimer's Disease. Journal of Molecular Neuroscience, 2001, 17, 137-145.	2.3	205
40	Does Alzheimer disease tilt the scales of amyloid degradation versus accumulation?. Nature Medicine, 2000, 6, 133-134.	30.7	34
41	Subtractive analysis of <i>S. franciscanus</i> and <i>S. purpuratus</i> ovary mRNA: what kinds of genes determine species-specificity?. Zygote, 1999, 8, S64-S64.	1.1	0
42	Improved synthesis and purification of Alzheimer's Aβ 1–42 and analogs. International Journal of Peptide Research and Therapeutics, 1999, 6, 151-156.	0.1	0
43	Improved synthesis and purification of Alzheimer's Aβ 1–42 and analogs. International Journal of Peptide Research and Therapeutics, 1999, 6, 151-156.	0.1	0
44	Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid A?1-42 pathogenesis. Journal of Neuroscience Research, 1998, 52, 691-698.	2.9	253
45	Amyloid ? protein is internalized selectively by hippocampal field CA1 and causes neurons to accumulate amyloidogenic carboxyterminal fragments of the amyloid precursor protein. , 1998, 397, 139-147.		81
46	Amyloid β protein is internalized selectively by hippocampal field CA1 and causes neurons to accumulate amyloidogenic carboxyterminal fragments of the amyloid precursor protein. Journal of Comparative Neurology, 1998, 397, 139-147.	1.6	3
47	Structureâ€Activity Analyses of βâ€Amyloid Peptides: Contributions of the β25–35 Region to Aggregation and Neurotoxicity. Journal of Neurochemistry, 1995, 64, 253-265.	3.9	641
48	When Sperm Meets Egg: The Interaction of Bindin with Sulfated Fucans Trends in Glycoscience and Glycotechnology, 1991, 3, 406-413.	0.1	2
49	THE EFFECT OF SOLUBLE EGG JELLY ON THE FERTILIZABILITY OF ACID-DEJELLIED SEA URCHIN EGGS*. Development Growth and Differentiation, 1979, 21, 47-60.	1.5	28