Manuel Mayr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2680879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes. Circulation Research, 2010, 107, 810-817.	2.0	1,280
2	Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 2012, 14, 249-256.	4.6	1,170
3	Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. Journal of Clinical Investigation, 2014, 124, 2136-2146.	3.9	803
4	Cardioprotection and lifespan extension by the natural polyamine spermidine. Nature Medicine, 2016, 22, 1428-1438.	15.2	801
5	Serum Soluble Heat Shock Protein 60 Is Elevated in Subjects With Atherosclerosis in a General Population. Circulation, 2000, 102, 14-20.	1.6	563
6	Chronic Infections and the Risk of Carotid Atherosclerosis. Circulation, 2001, 103, 1064-1070.	1.6	491
7	Lipidomics Profiling and Risk of Cardiovascular Disease in the Prospective Population-Based Bruneck Study. Circulation, 2014, 129, 1821-1831.	1.6	445
8	Prospective Study on Circulating MicroRNAs and Risk of Myocardial Infarction. Journal of the American College of Cardiology, 2012, 60, 290-299.	1.2	419
9	Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion. Circulation Research, 2015, 116, 1312-1323.	2.0	419
10	Native T1 Mapping in Differentiation of Normal Myocardium From Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy. JACC: Cardiovascular Imaging, 2013, 6, 475-484.	2.3	386
11	Circulating MicroRNAs as Novel Biomarkers for Platelet Activation. Circulation Research, 2013, 112, 595-600.	2.0	366
12	MicroRNAs in Cardiovascular Disease. Journal of the American College of Cardiology, 2016, 68, 2577-2584.	1.2	341
13	Calcium Regulates Key Components of Vascular Smooth Muscle Cell–Derived Matrix Vesicles to Enhance Mineralization. Circulation Research, 2011, 109, e1-12.	2.0	329
14	The †Digital Twin' to enable the vision of precision cardiology. European Heart Journal, 2020, 41, 4556-4564.	1.0	319
15	Endothelial Cytotoxicity Mediated by Serum Antibodies to Heat Shock Proteins of <i>Escherichia coli</i> and <i>Chlamydia pneumoniae</i> . Circulation, 1999, 99, 1560-1566.	1.6	293
16	Infections, Immunity, and Atherosclerosis. Circulation, 2000, 102, 833-839.	1.6	285
17	Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 349-369.	2.9	279
18	Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood, 2009, 114, 723-732.	0.6	262

#	Article	IF	CITATIONS
19	Proteomics Characterization of Extracellular Space Components in the Human Aorta. Molecular and Cellular Proteomics, 2010, 9, 2048-2062.	2.5	242
20	Association of Serum Antibodies to Heat-Shock Protein 65 With Carotid Atherosclerosis. Circulation, 1999, 100, 1169-1174.	1.6	236
21	Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovascular Research, 2012, 93, 555-562.	1.8	232
22	Discrimination and Net Reclassification of Cardiovascular Risk With Lipoprotein(a). Journal of the American College of Cardiology, 2014, 64, 851-860.	1.2	231
23	Macrophage MicroRNA-155 Promotes Cardiac Hypertrophy and Failure. Circulation, 2013, 128, 1420-1432.	1.6	225
24	MicroRNAs in Vascular and Metabolic Disease. Circulation Research, 2012, 110, 508-522.	2.0	223
25	Oxidized Phospholipids, Lipoprotein(a), Lipoprotein-Associated Phospholipase A2 Activity, and 10-Year Cardiovascular Outcomes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1788-1795.	1.1	220
26	Extracellular Matrix Composition and Remodeling in Human Abdominal Aortic Aneurysms: A Proteomics Approach. Molecular and Cellular Proteomics, 2011, 10, M111.008128.	2.5	213
27	Exacerbated vein graft arteriosclerosis in protein kinase Cδ–null mice. Journal of Clinical Investigation, 2001, 108, 1505-1512.	3.9	212
28	Combined Metabolomic and Proteomic Analysis of Human Atrial Fibrillation. Journal of the American College of Cardiology, 2008, 51, 585-594.	1.2	202
29	Circulating MicroRNA-122 Is Associated With the Risk of New-Onset Metabolic Syndrome and Type 2 Diabetes. Diabetes, 2017, 66, 347-357.	0.3	199
30	The Hypoxia-Inducible MicroRNA Cluster miR-199aâ^1⁄4214 Targets Myocardial PPARδ and Impairs Mitochondrial Fatty Acid Oxidation. Cell Metabolism, 2013, 18, 341-354.	7.2	193
31	Proteomics Analysis of Cardiac Extracellular Matrix Remodeling in a Porcine Model of Ischemia/Reperfusion Injury. Circulation, 2012, 125, 789-802.	1.6	191
32	Smooth Muscle Cells in Transplant Atherosclerotic Lesions Are Originated From Recipients, but Not Bone Marrow Progenitor Cells. Circulation, 2002, 106, 1834-1839.	1.6	188
33	Oxidation-Specific Biomarkers, Prospective 15-Year Cardiovascular and Stroke Outcomes, and Net Reclassification of Cardiovascular Events. Journal of the American College of Cardiology, 2012, 60, 2218-2229.	1.2	187
34	Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. European Journal of Heart Failure, 2019, 21, 272-285.	2.9	182
35	Cyclic Strain Stress-induced Mitogen-activated Protein Kinase (MAPK) Phosphatase 1 Expression in Vascular Smooth Muscle Cells Is Regulated by Ras/Rac-MAPK Pathways. Journal of Biological Chemistry, 1999, 274, 25273-25280.	1.6	181
36	Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties. Molecular and Cellular Proteomics, 2013, 12, 2205-2219.	2.5	178

#	Article	IF	CITATIONS
37	Short Communication: Asymmetric Dimethylarginine Impairs Angiogenic Progenitor Cell Function in Patients With Coronary Artery Disease Through a MicroRNA-21–Dependent Mechanism. Circulation Research, 2010, 107, 138-143.	2.0	177
38	Comparative Lipidomics Profiling of Human Atherosclerotic Plaques. Circulation: Cardiovascular Genetics, 2011, 4, 232-242.	5.1	177
39	Native T1 in Discrimination of Acute and Convalescent Stages in Patients With ClinicalÂDiagnosis of Myocarditis. JACC: Cardiovascular Imaging, 2015, 8, 37-46.	2.3	177
40	Oxidized Phospholipids Predict the Presence and Progression of Carotid and Femoral Atherosclerosis and Symptomatic Cardiovascular Disease. Journal of the American College of Cardiology, 2006, 47, 2219-2228.	1.2	174
41	Novel methodologies for biomarker discovery in atherosclerosis. European Heart Journal, 2015, 36, 2635-2642.	1.0	174
42	Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nature Communications, 2017, 8, 1614.	5.8	172
43	MicroRNA Biomarkers and Platelet Reactivity. Circulation Research, 2017, 120, 418-435.	2.0	171
44	Proteomic and Metabolomic Analyses of Atherosclerotic Vessels From Apolipoprotein E-Deficient Mice Reveal Alterations in Inflammation, Oxidative Stress, and Energy Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2135-2142.	1.1	170
45	Association of MicroRNAs and YRNAs With Platelet Function. Circulation Research, 2016, 118, 420-432.	2.0	167
46	Extracellular Matrix Secretion by Cardiac Fibroblasts. Circulation Research, 2013, 113, 1138-1147.	2.0	162
47	Cross-Reactive B-Cell Epitopes of Microbial and Human Heat Shock Protein 60/65 in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1060-1065.	1.1	151
48	Very-Low-Density Lipoprotein–Associated Apolipoproteins Predict Cardiovascular Events and Are Lowered by InhibitionÂofÂAPOC-III. Journal of the American College of Cardiology, 2017, 69, 789-800.	1.2	150
49	Higher spermidine intake is linked to lower mortality: a prospective population-based study. American Journal of Clinical Nutrition, 2018, 108, 371-380.	2.2	150
50	Pkm2 Regulates Cardiomyocyte Cell Cycle and Promotes Cardiac Regeneration. Circulation, 2020, 141, 1249-1265.	1.6	147
51	Mechanical Stressâ€induced DNA damage and racâ€p38MAPK Signal Pathways Mediate p53â€dependent Apoptosis in Vascular Smooth Muscle Cells. FASEB Journal, 2002, 16, 1423-1425.	0.2	144
52	Transformative Impact of Proteomics on Cardiovascular Health and Disease. Circulation, 2015, 132, 852-872.	1.6	140
53	Biomechanical stressâ€induced apoptosis in vein grafts involves p38 mitogenâ€activated protein kinases. FASEB Journal, 2000, 14, 261-270.	0.2	138
54	Both Donor and Recipient Origins of Smooth Muscle Cells in Vein Graft Atherosclerotic Lesions. Circulation Research, 2002, 91, e13-20.	2.0	138

#	Article	IF	CITATIONS
55	Systems biology in cardiovascular disease: a multiomics approach. Nature Reviews Cardiology, 2021, 18, 313-330.	6.1	134
56	Signature of circulating microRNAs in osteoarthritis. Annals of the Rheumatic Diseases, 2015, 74, e18-e18.	0.5	130
57	Longâ€ŧerm therapeutic silencing of miRâ€33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Molecular Medicine, 2014, 6, 1133-1141.	3.3	127
58	Proteomics, Metabolomics, and Immunomics on Microparticles Derived From Human Atherosclerotic Plaques. Circulation: Cardiovascular Genetics, 2009, 2, 379-388.	5.1	125
59	ADAMTS-7 Inhibits Re-endothelialization of Injured Arteries and Promotes Vascular Remodeling Through Cleavage of Thrombospondin-1. Circulation, 2015, 131, 1191-1201.	1.6	125
60	Terminal Differentiation, Advanced Organotypic Maturation, and Modeling of Hypertrophic Growth in Engineered Heart Tissue. Circulation Research, 2011, 109, 1105-1114.	2.0	124
61	Asymmetric Dimethylarginine and Cardiovascular Risk: Systematic Review and Metaâ€Analysis of 22 Prospective Studies. Journal of the American Heart Association, 2015, 4, e001833.	1.6	123
62	Preclinical development of a miR-132 inhibitor for heart failure treatment. Nature Communications, 2020, 11, 633.	5.8	123
63	Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. Journal of Clinical Investigation, 2017, 127, 1546-1560.	3.9	122
64	SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care. Nature Communications, 2021, 12, 3406.	5.8	122
65	Proteomics Identifies Thymidine Phosphorylase As a Key Regulator of the Angiogenic Potential of Colony-Forming Units and Endothelial Progenitor Cell Cultures. Circulation Research, 2009, 104, 32-40.	2.0	121
66	The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. European Journal of Heart Failure, 2018, 20, 445-459.	2.9	118
67	Analytical challenges and technical limitations in assessing circulating MiRNAs. Thrombosis and Haemostasis, 2012, 108, 592-598.	1.8	115
68	Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovascular Research, 2011, 89, 650-660.	1.8	114
69	Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 725-736.	1.8	114
70	Mechanical Stretch-Induced Apoptosis in Smooth Muscle Cells Is Mediated by β1-Integrin Signaling Pathways. Hypertension, 2003, 41, 903-911.	1.3	113
71	Diabetes Mellitus–Induced Microvascular Destabilization in the Myocardium. Journal of the American College of Cardiology, 2017, 69, 131-143.	1.2	113
72	Histone Deacetylase 7 Controls Endothelial Cell Growth Through Modulation of Î ² -Catenin. Circulation Research, 2010, 106, 1202-1211.	2.0	110

#	Article	IF	CITATIONS
73	Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease?. European Heart Journal, 2016, 37, 3260-3266.	1.0	108
74	Increased Risk of Atherosclerosis Is Confined to CagA-PositiveHelicobacter pyloriStrains. Stroke, 2003, 34, 610-615.	1.0	105
75	Gestational Diabetes Mellitus Impairs Nrf2-Mediated Adaptive Antioxidant Defenses and Redox Signaling in Fetal Endothelial Cells In Utero. Diabetes, 2013, 62, 4088-4097.	0.3	104
76	Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin. Scientific Reports, 2017, 7, 39501.	1.6	104
77	Angiogenic microRNAs Linked to Incidence and Progression of Diabetic Retinopathy in Type 1 Diabetes. Diabetes, 2016, 65, 216-227.	0.3	103
78	lschemic preconditioning exaggerates cardiac damage in PKC-δ null mice. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H946-H956.	1.5	100
79	Lipoprotein-associated phospholipase A2 activity, ferritin levels, metabolic syndrome, and 10-year cardiovascular and non-cardiovascular mortality: results from the Bruneck study. European Heart Journal, 2008, 30, 107-115.	1.0	99
80	Active and Passive Smoking, Chronic Infections, and the Risk of Carotid Atherosclerosis. Stroke, 2002, 33, 2170-2176.	1.0	97
81	Protein Kinase D Selectively Targets Cardiac Troponin I and Regulates Myofilament Ca 2+ Sensitivity in Ventricular Myocytes. Circulation Research, 2007, 100, 864-873.	2.0	97
82	Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis. Cell Reports, 2017, 21, 1317-1330.	2.9	96
83	Glycoproteomic Analysis of the Secretome of Human Endothelial Cells. Molecular and Cellular Proteomics, 2013, 12, 956-978.	2.5	94
84	Role of miR-195 in Aortic Aneurysmal Disease. Circulation Research, 2014, 115, 857-866.	2.0	93
85	MicroRNAs Within the Continuum of Postgenomics Biomarker Discovery. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 206-214.	1.1	92
86	Targeting myocardial remodelling to develop novel therapies for heart failure. European Journal of Heart Failure, 2014, 16, 494-508.	2.9	90
87	Comparative Analysis of Circulating Noncoding RNAs Versus Protein Biomarkers in the Detection of Myocardial Injury. Circulation Research, 2019, 125, 328-340.	2.0	86
88	Reduced Neointima Hyperplasia of Vein Bypass Grafts in Intercellular Adhesion Molecule-1–Deficient Mice. Circulation Research, 2000, 86, 434-440.	2.0	84
89	Loss of p53 Accelerates Neointimal Lesions of Vein Bypass Grafts in Mice. Circulation Research, 2002, 90, 197-204.	2.0	83
90	Association of Serum-Soluble Heat Shock Protein 60 With Carotid Atherosclerosis. Stroke, 2005, 36, 2571-2576.	1.0	83

#	Article	IF	CITATIONS
91	Novel Role of ADAMTS-5 Protein in Proteoglycan Turnover and Lipoprotein Retention in Atherosclerosis. Journal of Biological Chemistry, 2012, 287, 19341-19345.	1.6	82
92	Impact of intravenous heparin on quantification of circulating microRNAs in patients with coronary artery disease. Thrombosis and Haemostasis, 2013, 110, 609-615.	1.8	82
93	An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology. European Journal of Heart Failure, 2018, 20, 216-227.	2.9	81
94	Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. Journal of Experimental Medicine, 2017, 214, 2121-2138.	4.2	78
95	Sexual dimorphism in COVID-19: potential clinical and public health implications. Lancet Diabetes and Endocrinology,the, 2022, 10, 221-230.	5.5	78
96	Proteomics Analysis of the Cardiac Myofilament Subproteome Reveals Dynamic Alterations in Phosphatase Subunit Distribution. Molecular and Cellular Proteomics, 2010, 9, 497-509.	2.5	77
97	Extracellular Matrix Proteomics Reveals Interplay of Aggrecan and Aggrecanases in Vascular Remodeling of Stented Coronary Arteries. Circulation, 2018, 137, 166-183.	1.6	77
98	Proteomics-based Development of Biomarkers in Cardiovascular Disease. Molecular and Cellular Proteomics, 2006, 5, 1853-1864.	2.5	76
99	Proteomic and metabolomic analysis of cardioprotection: Interplay between protein kinase C epsilon and delta in regulating glucose metabolism of murine hearts. Journal of Molecular and Cellular Cardiology, 2009, 46, 268-277.	0.9	75
100	Native T1 and T2 mapping by CMR in lupus myocarditis: Disease recognition and response to treatment. International Journal of Cardiology, 2016, 222, 717-726.	0.8	75
101	In Aptamers They Trust. Circulation, 2018, 138, 2482-2485.	1.6	74
102	Vascular proteomics: Linking proteomic and metabolomic changes. Proteomics, 2004, 4, 3751-3761.	1.3	73
103	Smooth muscle cell apoptosis in arteriosclerosis. Experimental Gerontology, 2001, 36, 969-987.	1.2	72
104	Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: a position paper of the ESC Working Group on Myocardial Function. Cardiovascular Research, 2021, 117, 43-59.	1.8	72
105	Loss of PKC-δ alters cardiac metabolism. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H937-H945.	1.5	71
106	Identification of Cardiac Myosin-binding Protein C as a Candidate Biomarker of Myocardial Infarction by Proteomics Analysis. Molecular and Cellular Proteomics, 2009, 8, 2687-2699.	2.5	71
107	Proteomics: from single molecules to biological pathways. Cardiovascular Research, 2013, 97, 612-622.	1.8	71
108	Proteomics and Metabolomics Combined in Cardiovascular Research. Trends in Cardiovascular Medicine, 2007, 17, 43-48.	2.3	70

#	Article	IF	CITATIONS
109	Lipidomics. Circulation: Cardiovascular Genetics, 2014, 7, 941-954.	5.1	70
110	Rapid Development of Vein Graft Atheroma in ApoE-Deficient Mice. American Journal of Pathology, 2000, 157, 659-669.	1.9	69
111	Oxidative stress in atherosclerosis: The role of microRNAs in arterial remodeling. Free Radical Biology and Medicine, 2013, 64, 69-77.	1.3	68
112	Role of ADAMTS-5 in Aortic Dilatation and Extracellular Matrix Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1537-1548.	1.1	66
113	Oxidized Low-Density Lipoprotein Autoantibodies, Chronic Infections, and Carotid Atherosclerosis in a Population-Based Study. Journal of the American College of Cardiology, 2006, 47, 2436-2443.	1.2	64
114	Metabolic changes in hypertrophic cardiomyopathies: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 1273-1280.	1.8	64
115	Metabolomics. Circulation: Cardiovascular Genetics, 2008, 1, 58-65.	5.1	63
116	Asymmetric and symmetric dimethylarginines are of similar predictive value for cardiovascular risk in the general population. Atherosclerosis, 2009, 205, 261-265.	0.4	62
117	Chronic miRâ€29 antagonism promotes favorable plaque remodeling in atherosclerotic mice. EMBO Molecular Medicine, 2016, 8, 643-653.	3.3	61
118	Review focus on the role of microRNA in cardiovascular biology and disease. Cardiovascular Research, 2012, 93, 543-544.	1.8	60
119	Pathogenesis of Varicose Veins. Journal of Vascular and Interventional Radiology, 2012, 23, 33-39.	0.2	58
120	Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins. Cardiovascular Research, 2016, 110, 419-430.	1.8	56
121	Comparison of MOLLI, shMOLLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction. European Heart Journal Cardiovascular Imaging, 2018, 19, 768-776.	0.5	56
122	Proteomic and Metabolomic Analysis of Smooth Muscle Cells Derived From the Arterial Media and Adventitial Progenitors of Apolipoprotein E–Deficient Mice. Circulation Research, 2008, 102, 1046-1056.	2.0	55
123	Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia. Nature, 2020, 587, 460-465.	13.7	55
124	Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes. Blood, 2012, 120, 415-423.	0.6	54
125	Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics. Journal of Proteomics, 2015, 129, 83-92.	1.2	54
126	Matrix Metalloproteinase-8 Promotes Vascular Smooth Muscle Cell Proliferation and Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 90-98.	1.1	53

#	Article	IF	CITATIONS
127	Association Between Vascular Cell Adhesion Molecule 1 and Atrial Fibrillation. JAMA Cardiology, 2017, 2, 516.	3.0	53
128	Macrophage-lysis mediated by autoantibodies to heat shock protein 65/60. Atherosclerosis, 1997, 128, 27-38.	0.4	52
129	Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1820-1834.	1.8	51
130	Association of cardiometabolic microRNAs with COVID-19 severity and mortality. Cardiovascular Research, 2022, 118, 461-474.	1.8	51
131	Inhibition of Arteriosclerosis by T-Cell Depletion in Normocholesterolemic Rabbits Immunized With Heat Shock Protein 65. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1905-1911.	1.1	50
132	Redox Regulation of Soluble Epoxide Hydrolase by 15-Deoxy-Δ-Prostaglandin J ₂ Controls Coronary Hypoxic Vasodilation. Circulation Research, 2011, 108, 324-334.	2.0	50
133	"Going Long― Long Non-Coding RNAs as Biomarkers. Circulation Research, 2014, 115, 607-609.	2.0	50
134	Proteomic and Metabolomic Analysis of Vascular Smooth Muscle Cells. Circulation Research, 2004, 94, e87-96.	2.0	49
135	Functional Role of Matrix Metalloproteinase-8 in Stem/Progenitor Cell Migration and Their Recruitment Into Atherosclerotic Lesions. Circulation Research, 2013, 112, 35-47.	2.0	48
136	Proteomic Identification of Matrix Metalloproteinase Substrates in the Human Vasculature. Circulation: Cardiovascular Genetics, 2013, 6, 106-117.	5.1	47
137	Proteomic analysis of the secretome of human umbilical vein endothelial cells using a combination of freeâ€flow electrophoresis and nanoflow LCâ€MS/MS. Proteomics, 2009, 9, 4991-4996.	1.3	44
138	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	1.8	44
139	Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation. Circulation, 2016, 134, 817-832.	1.6	43
140	Extracellular Matrix in Vascular Disease, Part 2/4. Journal of the American College of Cardiology, 2020, 75, 2189-2203.	1.2	43
141	Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation. JCl Insight, 2017, 2, .	2.3	42
142	Cytochrome P4502S1: a novel monocyte/macrophage fatty acid epoxygenase in human atherosclerotic plaques. Basic Research in Cardiology, 2013, 108, 319.	2.5	41
143	Loss of <i>Biglycan</i> Enhances Thrombin Generation in <i>Apolipoprotein E</i> -Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, e41-50.	1.1	41
144	From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research†Basic Research in Cardiology, 2016, 111, 69.	2.5	41

#	Article	IF	CITATIONS
145	Functional Genomics of Cardioprotection by Ischemic Conditioning and the Influence of Comorbid Conditions: Implications in Target Identification. Current Drug Targets, 2015, 16, 904-911.	1.0	41
146	XBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels Via Cross Talk With the PDGF Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2134-2144.	1.1	40
147	Proteomic characterization of human early pro-angiogenic cells. Journal of Molecular and Cellular Cardiology, 2011, 50, 333-336.	0.9	39
148	MicroRNA Biomarkers for Coronary Artery Disease?. Current Atherosclerosis Reports, 2015, 17, 70.	2.0	39
149	Coupling Vascular and Myocardial Inflammatory Injury into a Common Phenotype of Cardiovascular Dysfunction: Systemic Inflammation and Aging – A Mini-Review. Gerontology, 2011, 57, 295-303.	1.4	38
150	The -omics era: Proteomics and lipidomics in vascular research. Atherosclerosis, 2012, 221, 12-17.	0.4	37
151	Redox State of Pentraxin 3 as a Novel Biomarker for Resolution of Inflammation and Survival in Sepsis. Molecular and Cellular Proteomics, 2014, 13, 2545-2557.	2.5	37
152	Non-coding RNAs in vascular disease – from basic science to clinical applications: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 1281-1286.	1.8	37
153	Proteomics of acute coronary syndromes. Current Atherosclerosis Reports, 2009, 11, 188-195.	2.0	36
154	Oxidant-induced Interprotein Disulfide Formation in Cardiac Protein DJ-1 Occurs via an Interaction with Peroxiredoxin 2. Journal of Biological Chemistry, 2016, 291, 10399-10410.	1.6	36
155	Downregulation of MicroRNA-126 Augments DNA Damage Response in Cigarette Smokers and Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 665-668.	2.5	36
156	Preoperative high-dose atorvastatin for prevention of atrial fibrillation after cardiac surgery: A randomized controlled trial. Journal of Thoracic and Cardiovascular Surgery, 2011, 141, 244-248.	0.4	35
157	Guidelines for the functional annotation of microRNAs using the Gene Ontology. Rna, 2016, 22, 667-676.	1.6	35
158	Glycoproteomic Analysis of the Aortic Extracellular Matrix in Marfan Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1859-1873.	1.1	35
159	Comparative Proteomics Profiling Reveals Role of Smooth Muscle Progenitors in Extracellular Matrix Production. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1325-1332.	1.1	34
160	Proteomics and Metabolomics for Mechanistic Insights and Biomarker Discovery in Cardiovascular Disease. Revista Espanola De Cardiologia (English Ed), 2013, 66, 657-661.	0.4	34
161	microRNAs as Promising Biomarkers of Platelet Activity in Antiplatelet Therapy Monitoring. International Journal of Molecular Sciences, 2020, 21, 3477.	1.8	34
162	Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis. Basic Research in Cardiology, 2021, 116, 26.	2.5	34

#	Article	IF	CITATIONS
163	Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation. EMBO Molecular Medicine, 2021, 13, e13074.	3.3	34
164	Proteomic dataset of mouse aortic smooth muscle cells. Proteomics, 2005, 5, 4546-4557.	1.3	33
165	Histone Deacetylase 3 Unconventional Splicing Mediates Endothelial-to-mesenchymal Transition through Transforming Growth Factor β2. Journal of Biological Chemistry, 2013, 288, 31853-31866.	1.6	33
166	Noncoding RNAs versus Protein Biomarkers in Cardiovascular Disease. Trends in Molecular Medicine, 2020, 26, 583-596.	3.5	33
167	Phosphoregulation of the Titin-cap Protein Telethonin in Cardiac Myocytes. Journal of Biological Chemistry, 2014, 289, 1282-1293.	1.6	32
168	CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function. Scientific Reports, 2017, 7, 8585.	1.6	32
169	Aspirin, clopidogrel and prasugrel monotherapy in patients with type 2 diabetes mellitus: a double-blind randomised controlled trial of the effects on thrombotic markers and microRNA levels. Cardiovascular Diabetology, 2020, 19, 3.	2.7	31
170	Extracellular Matrix in Heart Failure: Role of ADAMTS5 in Proteoglycan Remodeling. Circulation, 2021, 144, 2021-2034.	1.6	31
171	Neutrophil-Derived Protein S100A8/A9 Alters the Platelet Proteome in Acute Myocardial Infarction and Is Associated With Changes in Platelet Reactivity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 49-62.	1.1	31
172	The Paradox of Hypoxic and Oxidative Stress in AtherosclerosisâŽâŽEditorials published in the Journal of the American College of Cardiology reflect the views of the authors and do not necessarily represent the views of JACC or the American College of Cardiology Journal of the American College of Cardiology, 2008, 51, 1266-1267.	1.2	30
173	Inhibition of profibrotic microRNA-21 affects platelets and their releasate. JCI Insight, 2018, 3, .	2.3	30
174	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	1.8	30
175	Effects of perhexiline-induced fuel switch on the cardiac proteome and metabolome. Journal of Molecular and Cellular Cardiology, 2013, 55, 27-30.	0.9	29
176	Proteomic analysis reveals higher demand for antioxidant protection in embryonic stem cell-derived smooth muscle cells. Proteomics, 2006, 6, 6437-6446.	1.3	28
177	Systems biology—opportunities and challenges: the application of proteomics to study the cardiovascular extracellular matrix. Cardiovascular Research, 2016, 112, 626-636.	1.8	27
178	Expanding the horizons of microRNA bioinformatics. Rna, 2018, 24, 1005-1017.	1.6	27
179	A plasma proteogenomic signature for fibromuscular dysplasia. Cardiovascular Research, 2020, 116, 63-77.	1.8	27
180	Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26

#	Article	IF	CITATIONS
181	Chromobox Protein Homolog 3 Is Essential for Stem Cell Differentiation to Smooth Muscles In Vitro and in Embryonic Arteriogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1842-1852.	1.1	25
182	The Emerging Role of the ADAMTS Family in Vascular Diseases. Circulation Research, 2018, 123, 1279-1281.	2.0	25
183	Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and proteome. Journal of Molecular and Cellular Cardiology, 2011, 50, 982-990.	0.9	24
184	Proteomics. Circulation Research, 2011, 108, 499-511.	2.0	24
185	Fibroblast Nox2 (NADPH Oxidase-2) Regulates ANG II (Angiotensin II)–Induced Vascular Remodeling and Hypertension via Paracrine Signaling to Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 698-710.	1.1	24
186	Substrate Modifications Precede the Development of Atrial Fibrillation After Cardiac Surgery: A Proteomic Study. Annals of Thoracic Surgery, 2011, 92, 104-110.	0.7	23
187	Adaptation to HIF-1 deficiency by upregulation of the AMP/ATP ratio and phosphofructokinase activation in hepatomas. BMC Cancer, 2011, 11, 198.	1.1	23
188	Inadequate hepcidin serum concentrations predict incident type 2 diabetes mellitus. Diabetes/Metabolism Research and Reviews, 2016, 32, 187-192.	1.7	23
189	Proteome and functional decline as platelets age in the circulation. Journal of Thrombosis and Haemostasis, 2021, 19, 3095-3112.	1.9	23
190	Gene editing reverses arrhythmia susceptibility in humanized PLN-R14del mice: modelling a European cardiomyopathy with global impact. Cardiovascular Research, 2022, 118, 3140-3150.	1.8	23
191	Proteomic analysis of secretory proteins and vesicles in vascular research. Proteomics - Clinical Applications, 2008, 2, 882-891.	0.8	22
192	A Sequential Extraction Methodology for Cardiac Extracellular Matrix Prior to Proteomics Analysis. Methods in Molecular Biology, 2013, 1005, 215-223.	0.4	22
193	Gene Network and Proteomic Analyses of Cardiac Responses to Pathological and Physiological Stress. Circulation: Cardiovascular Genetics, 2013, 6, 588-597.	5.1	21
194	"Young at heart― Regenerative potential linked to immature cardiac phenotypes. Journal of Molecular and Cellular Cardiology, 2016, 92, 105-108.	0.9	21
195	Correlates of serum hepcidin levels and its association with cardiovascular disease in an elderly general population. Clinical Chemistry and Laboratory Medicine, 2016, 54, 151-61.	1.4	21
196	Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. International Journal of Cardiology, 2020, 303, 80-85.	0.8	21
197	Caveats of Untargeted Metabolomics forÂBiomarker Discovery â^—. Journal of the American College of Cardiology, 2016, 68, 1294-1296.	1.2	20
198	Role of oxidative stress in angiotensin-II mediated contraction of human conduit arteries in patients with cardiovascular disease. Vascular Pharmacology, 2005, 43, 277-282.	1.0	19

#	Article	IF	CITATIONS
199	Nitrosative protein oxidation is modulated during early endotoxemia. Nitric Oxide - Biology and Chemistry, 2011, 25, 118-124.	1.2	19
200	MicroRNA biomarkers for failing hearts?. European Heart Journal, 2013, 34, 2782-2783.	1.0	19
201	Platelet "-omics―in health and cardiovascular disease. Atherosclerosis, 2020, 307, 87-96.	0.4	19
202	Integrated Membrane Protein Analysis of Mature and Embryonic Stem Cell-derived Smooth Muscle Cells Using a Novel Combination of CyDye/Biotin Labeling. Molecular and Cellular Proteomics, 2007, 6, 1788-1797.	2,5	18
203	Glycoproteomics of the Extracellular Matrix: A Method for Intact Glycopeptide Analysis Using Mass Spectrometry. Journal of Visualized Experiments, 2017, , .	0.2	18
204	Diminished PLK2 Induces Cardiac Fibrosis and Promotes Atrial Fibrillation. Circulation Research, 2021, 129, 804-820.	2.0	18
205	Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis. Scientific Reports, 2016, 6, 29417.	1.6	18
206	Proteomic dataset of Sca-1+ progenitor cells. Proteomics, 2005, 5, 4533-4545.	1.3	17
207	Effects of Heparin on Temporal MicroRNA Profiles. Journal of the American College of Cardiology, 2014, 63, 940-941.	1.2	17
208	Plasma Proteomics for Epidemiology. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	17
209	Cartilage-like composition of keloid scar extracellular matrix suggests fibroblast mis-differentiation in disease. Matrix Biology Plus, 2019, 4, 100016.	1.9	17
210	Proteomic landscape of TGF-β1-induced fibrogenesis in renal fibroblasts. Scientific Reports, 2020, 10, 19054.	1.6	17
211	Circulating MicroRNA Levels Indicate Platelet and Leukocyte Activation in Endotoxemia Despite Platelet P2Y12 Inhibition. International Journal of Molecular Sciences, 2020, 21, 2897.	1.8	17
212	Protein Aggregation Is an Early Manifestation of Phospholamban p.(Arg14del)–Related Cardiomyopathy: Development of PLN-R14del–Related Cardiomyopathy. Circulation: Heart Failure, 2021, 14, e008532.	1.6	17
213	Endothelial cells exposed to atheroprotective flow secrete follistatin-like 1 protein which reduces transcytosis and inflammation. Atherosclerosis, 2021, 333, 56-66.	0.4	16
214	Metabolic profiling of hypoxia-inducible factor-1β-deficient and wild type Hepa-1 cells: effects of hypoxia measured by 1H magnetic resonance spectroscopy. Metabolomics, 2006, 1, 293-303.	1.4	15
215	Pharmacogenetics of Clopidogrel. Circulation: Cardiovascular Genetics, 2016, 9, 185-188.	5.1	15
216	Proteomic and metabolomic changes driven by elevating myocardial creatine suggest novel metabolic feedback mechanisms. Amino Acids, 2016, 48, 1969-1981.	1.2	15

#	Article	IF	CITATIONS
217	Metabolic recovery after weight loss surgery is reflected in serum microRNAs. BMJ Open Diabetes Research and Care, 2020, 8, e001441.	1.2	15
218	The Landscape of Coding and Noncoding RNAs in Platelets. Antioxidants and Redox Signaling, 2021, 34, 1200-1216.	2.5	14
219	MicroRNA-21 and the Vulnerability of Atherosclerotic Plaques. Molecular Therapy, 2018, 26, 938-940.	3.7	13
220	PCSK9 Activity Is Potentiated Through HDL Binding. Circulation Research, 2021, 129, 1039-1053.	2.0	13
221	Potential and Caveats of Lipidomics for Cardiovascular Disease. Circulation, 2016, 134, 1651-1654.	1.6	12
222	Extracellular matrix protein signature of recurrent spontaneous cervical artery dissection. Neurology, 2020, 95, e2047-e2055.	1.5	12
223	<scp>ESC</scp> Working Group on Myocardial Function Position Paper: how to study the right ventricle in experimental models. European Journal of Heart Failure, 2014, 16, 509-518.	2.9	11
224	Reply. Journal of the American College of Cardiology, 2017, 69, 2100.	1.2	11
225	Sweet Dicer. Circulation Research, 2015, 117, 116-118.	2.0	10
226	Long Noncoding RNAs and Angiogenesis. Circulation, 2017, 136, 80-82.	1.6	10
227	Cathepsin A contributes to left ventricular remodeling by degrading extracellular superoxide dismutase in mice. Journal of Biological Chemistry, 2020, 295, 12605-12617.	1.6	10
228	Method for Protein Subfractionation of Cardiovascular Tissues Before DIGE Analysis. Methods in Molecular Biology, 2012, 854, 287-297.	0.4	9
229	Proteomics in aortic aneurysm – What have we learnt so far?. Proteomics - Clinical Applications, 2013, 7, 504-515.	0.8	9
230	T1 values by conservative septal postprocessing approach are superior in relating to the interstitial myocardial fibrosis: findings from patients with severe aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P49.	1.6	9
231	Locally different proteome in aortas from patients with stenotic tricuspid and bicuspid aortic valvesâ€. European Journal of Cardio-thoracic Surgery, 2019, 56, 458-469.	0.6	9
232	Right Ventricle Has Normal Myofilament Function But Shows Perturbations in the Expression of Extracellular Matrix Genes in Patients With Tetralogy of Fallot Undergoing Pulmonary Valve Replacement. Journal of the American Heart Association, 2020, 9, e015342.	1.6	9
233	High-Density Lipoproteins Are the Main Carriers of PCSK9 in the Circulation. Journal of the American College of Cardiology, 2020, 75, 1495-1497.	1.2	9
234	Recent Highlights of Metabolomics in Cardiovascular Research. Circulation: Cardiovascular Genetics, 2011, 4, 463-464.	5.1	8

#	Article	IF	CITATIONS
235	The role of oxidant stress in angiotensin II-mediated contraction of human resistance arteries in the state of health and the presence of cardiovascular disease. Vascular Pharmacology, 2006, 45, 395-399.	1.0	7
236	Cardiovascular Risk Beyond Low-Density Lipoprotein Cholesterol. Journal of the American College of Cardiology, 2018, 71, 633-635.	1.2	7
237	When Sweet Turns Salty. Journal of the American College of Cardiology, 2016, 67, 813-816.	1.2	6
238	Characterisation of circulating biomarkers before and after cardiac resynchronisation therapy and their role in predicting CRT response: the COVERT-HF study. Open Heart, 2018, 5, e000899.	0.9	6
239	Extracellular Vesicle Crosstalk Between the Myocardium and Immune System Upon Infarction. Circulation Research, 2018, 123, 15-17.	2.0	6
240	Circulating microRNAs as biomarkers and mediators of platelet activation. Platelets, 2022, 33, 512-519.	1.1	6
241	From data gathering to systems medicine. Cardiovascular Research, 2013, 97, 599-600.	1.8	5
242	Optogenetic Monitoring of the Glutathione Redox State in Engineered Human Myocardium. Frontiers in Physiology, 2019, 10, 272.	1.3	5
243	A Proteomics-Based Assessment of Inflammation Signatures in Endotoxemia. Molecular and Cellular Proteomics, 2021, 20, 100021.	2.5	5
244	Letter by Metzler et al Regarding Article, "Intracoronary KAI-9803 as an Adjunct to Primary Coronary Intervention for Acute ST-Segment Elevation Myocardial Infarction― Circulation, 2008, 118, e80.	1.6	4
245	Multidimensional separation prior to mass spectrometry: Getting closer to the bottom of the iceberg. Proteomics, 2013, 13, 2942-2943.	1.3	4
246	Response by Schulte et al to Letter Regarding Article, "Comparative Analysis of Circulating Noncoding RNAs Versus Protein Biomarkers in the Detection of Myocardial Injury― Circulation Research, 2019, 125, e22-e23.	2.0	4
247	Platelet Reactivity in Individuals Over 65 Years Old Is Not Modulated by Age. Circulation Research, 2020, 127, 394-396.	2.0	3
248	Cardiovascular Proteomics. Proteomics - Clinical Applications, 2008, 2, 785-786.	0.8	2
249	Phenotyping transgenic animals—An integrated readout of pathophysiology by combining proteomics and metabolomics with cardiovascular imaging. Journal of Molecular and Cellular Cardiology, 2010, 48, 571-573.	0.9	2
250	Affinity Proteomics for Phosphatase Interactions in Atrial Fibrillationâ^—. Journal of the American College of Cardiology, 2015, 65, 174-176.	1.2	2
251	Highâ€density lipoproteins in high resolution: Will proteomics solve the paradox for cardiovascular risk?. Proteomics, 2017, 17, 1600426.	1.3	2
252	What are the prospects of apolipoprotein profiling for cardiovascular disease?. Expert Review of Molecular Diagnostics, 2017, 17, 805-807.	1.5	2

#	Article	IF	CITATIONS
253	MicroRNA-24 and the Diabetic Heart. JACC Basic To Translational Science, 2018, 3, 363-365.	1.9	2
254	Lipoprotein compartmentalisation as a regulator of PCSK9 activity. Journal of Molecular and Cellular Cardiology, 2021, 155, 21-24.	0.9	2
255	Isolation of Circulating Extracellular Vesicles by High-Performance Size-Exclusion Chromatography. Methods in Molecular Biology, 2022, 2504, 31-40.	0.4	2
256	Cardiovascular stem cells revisited. Journal of Molecular and Cellular Cardiology, 2011, 50, 257.	0.9	1
257	LDL-receptor-deficient mice lacking microRNA-143/145 have less atherosclerosis. Thrombosis and Haemostasis, 2014, 112, 629-629.	1.8	1
258	Circulating microRNAs as Novel Biomarkers in Cardiovascular Disease: Basic and Technical Principles. Cardiac and Vascular Biology, 2017, , 83-101.	0.2	1
259	DRP1: a novel regulator of PCSK9 secretion and degradation. Cardiovascular Research, 2021, 117, 2289-2290.	1.8	1
260	Proteomics of Atherosclerosis. , 2012, , 249-266.		1
261	Association of adolescent lipoprotein subclass profile with carotid intima-media thickness and comparison to adults: Prospective population-based cohort studies. Atherosclerosis, 2022, 341, 34-42.	0.4	1
262	Linking Genetics and Proteomics: Gene-Protein Associations Built on Diversity. Circulation, 2022, 145, 371-374.	1.6	1
263	Does Late Enhancement Imaging Decipher the Role of Myocardial Fibrosis in Hypertrophic Cardiomyopathy?. Current Cardiovascular Imaging Reports, 2011, 4, 87-89.	0.4	0
264	Endothelial Seeding for Abdominal Aortic Aneurysms. Circulation, 2013, 127, 1847-1849.	1.6	0
265	Tracing the Proteomic Fingerprint of the Diabetic Aorta?. Circulation: Cardiovascular Genetics, 2014, 7, 100-101.	5.1	0
266	Lessons from the spatiotemporal expression patterns of RNA vs. proteins during the cell cycle. Cardiovascular Research, 2021, 117, e91-e93.	1.8	0