
R Arroyo-GarcÃa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2680542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molecular Ecology, 2006, 15, 3707-3714.	3.9	423
2	Analysis of Differential Messenger RNA Expression Between Bovine Blastocysts Produced in Different Culture Systems: Implications for Blastocyst Quality1. Biology of Reproduction, 2002, 66, 589-595.	2.7	292
3	Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Molecular Ecology, 2012, 21, 800-816.	3.9	130
4	Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biology, 2018, 18, 137.	3.6	118
5	Chloroplast microsatellite polymorphisms inVitisspecies. Genome, 2002, 45, 1142-1149.	2.0	117
6	A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biology, 2014, 14, 229.	3.6	116
7	Recombination and Spontaneous Mutation at the Major Cluster of Resistance Genes in Lettuce (Lactuca sativa). Genetics, 2001, 157, 831-849.	2.9	88
8	<i>Dm3</i> Is One Member of a Large Constitutively Expressed Family of Nucleotide Binding Site—Leucine-Rich Repeat Encoding Genes. Molecular Plant-Microbe Interactions, 2002, 15, 251-261.	2.6	83
9	Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organogenic calli. Journal of Plant Physiology, 2006, 163, 1071-1079.	3.5	80
10	Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp Theoretical and Applied Genetics, 1999, 99, 405-418.	3.6	56
11	Genetic relationship among cultivated and wild grapevine accessions from Tunisia. Genome, 2004, 47, 1211-1219.	2.0	55
12	Genetic and epigenetic stability of cryopreserved and cold-stored hops (Humulus lupulus L.). Cryobiology, 2008, 57, 234-241.	0.7	49
13	In vitro plant regeneration from cotyledon and hypocotyl segments in two bell pepper cultivars. Plant Cell Reports, 1991, 10, 414-6.	5.6	44
14	Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile. Food Chemistry, 2016, 194, 117-127.	8.2	44
15	Epigenetic changes detected in micropropagated hop plants. Journal of Plant Physiology, 2009, 166, 1101-1111.	3.5	42
16	AFLP evaluation of genetic similarity among laurel populations (Laurus L.). Euphytica, 2001, 122, 155-164.	1.2	41
17	Genetic structure of natural populations of the grass endophyte Epichloe festucae in semiarid grasslands. Molecular Ecology, 2002, 11, 355-364.	3.9	41
18	Quantitative genetic analysis of berry firmness in table grape (Vitis vinifera L.). Tree Genetics and Genomes, 2015, 11, 1.	1.6	33

R Arroyo-GarcÃa

#	Article	IF	CITATIONS
19	Genetic diversity in Anatolian wild grapes (<i>Vitis vinifera</i> subsp. <i>sylvestris</i>) estimated by SSR markers. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 375-383.	0.8	32
20	Anthocyanin Composition of Several Wild Grape Accessions. American Journal of Enology and Viticulture, 2010, 61, 536-543.	1.7	31
21	A Transgenic Mutant of Lactuca sativa (Lettuce) with a T-DNA Tightly Linked to Loss of Downy Mildew Resistance. Molecular Plant-Microbe Interactions, 1997, 10, 970-977.	2.6	24
22	Molecular analysis of irradiation-induced and spontaneous deletion mutants at a disease resistance locus inLactuca sativa. Molecular Genetics and Genomics, 1996, 251, 316-325.	2.4	22
23	Allelic variation in the VvMYBA1 and VvMYBA2 domestication genes in natural grapevine populations (Vitis vinifera subsp. sylvestris). Plant Systematics and Evolution, 2015, 301, 1613-1624.	0.9	21
24	Forest Restoration in a Fog Oasis: Evidence Indicates Need for Cultural Awareness in Constructing the Reference. PLoS ONE, 2011, 6, e23004.	2.5	20
25	The influence of European and American wild germplasm in hop (Humulus lupulus L.) cultivars. Genetic Resources and Crop Evolution, 2010, 57, 575-586.	1.6	17
26	Genetic analysis of a white-to-red berry skin color reversion and its transcriptomic and metabolic consequences in grapevine (Vitis vinifera cv. â€~Moscatel Galego'). BMC Genomics, 2019, 20, 952.	2.8	17
27	Berry color variation in grapevine as a source of diversity. Plant Physiology and Biochemistry, 2018, 132, 696-707.	5.8	16
28	Spontaneous variation regarding grape berry skin color: A comprehensive study of berry development by means of biochemical and molecular markers. Food Research International, 2017, 97, 149-161.	6.2	13
29	Ex situ ampelographical characterisation of wild <i>Vitis vinifera</i> from fifty-one Spanish populations. Australian Journal of Grape and Wine Research, 2017, 23, 143-152.	2.1	13
30	Current distribution and characterization of the wild grapevine populations in Andalusia (Spain). Comptes Rendus - Biologies, 2017, 340, 164-177.	0.2	11
31	Characterization of the largest relic Eurasian wild grapevine reservoir in Southern Iberian Peninsula. Spanish Journal of Agricultural Research, 2016, 14, e0708.	0.6	10
32	Editorial: Origins and Domestication of the Grape. Frontiers in Plant Science, 2020, 11, 1176.	3.6	9
33	Molecular characterization of berry skin color reversion on grape somatic variants. Journal of Berry Research, 2018, 8, 147-162.	1.4	8
34	Genetic stability of in vitro conserved germplasm of Humulus lupulus L Agricultural and Food Science, 2009, 18, 144.	0.9	6
35	Genetics and expression of anthocyanin pathway genes in the major skin-pigmented Portuguese cultivar â€ĩVinhA£o' developing berries. Scientia Horticulturae, 2019, 244, 88-93.	3.6	4
36	Comparative analysis of the expression of sex candidate genes in flower of dioecious and hermaphrodite grapevine (Vitis vinifera L. ssp.). Scientia Horticulturae, 2020, 274, 109639.	3.6	4

#	Article	IF	CITATIONS
37	Evaluation of Microsatellite Detection Using Autoradiography and Capillary Electrophoresis in Hops. Journal of the American Society of Brewing Chemists, 2005, 63, 57-62.	1.1	3

38 Anthocyanin fingerprint of different genotypes of wild grapes (Vitis vinifera spp. sylvestris (Gmelin)) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

39	Molecular analysis of irradiation-induced and spontaneous deletion mutants at a disease resistance locus in. Molecular Genetics and Genomics, 1996, 251, 316.	2	2.4	2	
----	---	---	-----	---	--

Fingerprints of Anthocyanins and Flavonols in Wild Grapes (Vitis vinifera L. ssp. sylvestris (Gmelin)) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

42IS THE IN VITRO ESTABLISHMENT A CRITICAL POINT IN THE EPIGENETIC STABILITY OF THE CRYOPRESERVED HOPS (HUMULUS LUPULUS L.)?. Acta Horticulturae, 2011, , 121-127.0.2043Molecular characterization of berry color locus on the portuguese cv. †Fernão Pires' and cv. †Verdelho' and their red-berried somatic variant cultivars. Ciencia E Tecnica Vitivinicola, 2018, 33,0.90	41	GENETIC AND EPIGENETIC STABILITY OF HUMULUS LUPULUS AFTER IN VITRO PROCEDURES. Acta Horticulturae, 2009, , 115-124.	0.2	0
	42		0.2	0
184-190.	43	Molecular characterization of berry color locus on the portuguese cv. â€~Fernão Pires' and cv. â€~Verdelho' and their red-berried somatic variant cultivars. Ciencia E Tecnica Vitivinicola, 2018, 33, 184-190.	0.9	0

Biochemical and transcriptomic analysis in berries of wild and cultivated grapevine ($\langle i \rangle$ Vitis) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 462 T

45	In situ and genetic characterization of wild grapevine populations in the Castilian and Leon region (Spain). Oeno One, 2016, 48, 111.	1.4	0	
46	Exploiting genetic diversity to improve environmental sustainability of Mediterranean vineyards. , 2022 25-44.		0	