

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2680532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achieving pair creation via linear and nonlinear Breit–Wheeler processes in dense plasmas irradiated by high-intensity laser pulses. Physics of Plasmas, 2022, 29, .	1.9	2
2	Electron acceleration from transparent targets irradiated by ultra-intense helical laser beams. Communications Physics, 2022, 5, .	5.3	4
3	Progress in relativistic laser–plasma interaction with kilotesla-level applied magnetic fields. Physics of Plasmas, 2022, 29, 053104.	1.9	2
4	Kinetic phenomena of helical plasma waves with orbital angular momentum. Physics of Plasmas, 2022, 29, .	1.9	5
5	Towards the optimisation of direct laser acceleration. New Journal of Physics, 2021, 23, 023031.	2.9	22
6	Emission of electromagnetic waves as a stopping mechanism for nonlinear collisionless ionization waves in a high- β regime. Physical Review E, 2021, 103, 023209.	2.1	0
7	Particle integrator for particle-in-cell simulations of ultra-high intensity laser-plasma interactions. Journal of Computational Physics, 2021, 434, 110233.	3.8	8
8	Generation of Ultrarelativistic Monoenergetic Electron Bunches via a Synergistic Interaction of Longitudinal Electric and Magnetic Fields of a Twisted Laser. Physical Review Letters, 2021, 126, 234801.	7.8	19
9	Dominance of Î ³ -Î ³ electron-positron pair creation in a plasma driven by high-intensity lasers. Communications Physics, 2021, 4, .	5.3	32
10	Strong interplay between superluminosity and radiation friction during direct laser acceleration. New Journal of Physics, 2021, 23, 095010.	2.9	5
11	Relativistically transparent magnetic filaments: scaling laws, initial results and prospects for strong-field QED studies. New Journal of Physics, 2021, 23, 095009.	2.9	14
12	A single-laser scheme for observation of linear Breit–Wheeler electron–positron pair creation. New Journal of Physics, 2021, 23, 115005.	2.9	16
13	Effects of simulation dimensionality on laser-driven electron acceleration and photon emission in hollow microchannel targets. Physical Review E, 2021, 104, 045206.	2.1	6
14	Generation of megatesla magnetic fields by intense-laser-driven microtube implosions. Scientific Reports, 2020, 10, 16653.	3.3	30
15	Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields. Physical Review E, 2020, 102, 013206.	2.1	27
16	Comment on "Creation of Electron-Positron Pairs in Photon-Photon Collisions Driven by 10-PW Laser Pulses― Physical Review Letters, 2020, 125, 079501.	7.8	6
17	Electron-positron pair creation in the electric fields generated by micro-bubble implosions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126854.	2.1	10
18	Generation of focusing ion beams by magnetized electron sheath acceleration. Scientific Reports, 2020, 10, 18966.	3.3	9

#	Article	IF	CITATIONS
19	Application of laser-driven capacitor-coil to target normal sheath acceleration. High Energy Density Physics, 2020, 37, 100874.	1.5	2
20	Power Scaling for Collimated <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>î³</mml:mi></mml:math> -Ray Beams Generated by Structured Laser-Irradiated Targets and Its Application to Two-Photon Pair Production. Physical Review Applied, 2020, 13, .	3.8	45
21	Electron confinement by laser-driven azimuthal magnetic fields during direct laser acceleration. Physics of Plasmas, 2020, 27, .	1.9	7
22	Birefringence in thermally anisotropic relativistic plasmas and its impact on laser–plasma interactions. Physics of Plasmas, 2020, 27, .	1.9	7
23	Net energy gain in direct laser acceleration due to enhanced dephasing induced by an applied magnetic field. Physics of Plasmas, 2020, 27, 023110.	1.9	2
24	Laser reflection as a catalyst for direct laser acceleration in multipicosecond laser-plasma interaction. Physics of Plasmas, 2020, 27, 013106.	1.9	4
25	Energy gain by laser-accelerated electrons in a strong magnetic field. Physical Review E, 2020, 101, 043201.	2.1	15
26	Relativistic plasma physics in supercritical fields. Physics of Plasmas, 2020, 27, .	1.9	81
27	Sign reversal in magnetic field amplification by relativistic laser-driven microtube implosions. Applied Physics Letters, 2020, 117, 244101.	3.3	8
28	Magnetic field generation in a laser-irradiated thin collisionless plasma target by return current electrons carrying orbital angular momentum. New Journal of Physics, 2020, 22, 073067.	2.9	8
29	Strong surface magnetic field generation in relativistic short pulse laser–plasma interaction with an applied seed magnetic field. New Journal of Physics, 2020, 22, 113009.	2.9	9
30	Probing and possible application of the QED vacuum with micro-bubble implosions induced by ultra-intense laser pulses. Matter and Radiation at Extremes, 2019, 4, 034401.	3.9	11
31	Laser-driven acceleration of quasi-monoenergetic, near-collimated titanium ions via a transparency-enhanced acceleration scheme. New Journal of Physics, 2019, 21, 103005.	2.9	5
32	Direct laser acceleration of electrons in the plasma bubble by tightly focused laser pulses. Physics of Plasmas, 2019, 26, .	1.9	17
33	Extreme nonlinear dynamics in vacuum laser acceleration with a crossed beam configuration. Physics of Plasmas, 2019, 26, .	1.9	4
34	lonization injection of highly-charged copper ions for laser driven acceleration from ultra-thin foils. Scientific Reports, 2019, 9, 666.	3.3	16
35	Impact of ion dynamics on laser-driven electron acceleration and gamma-ray emission in structured targets at ultra-high laser intensities. Plasma Physics and Controlled Fusion, 2019, 61, 084004.	2.1	9
36	Relativistic proton emission from ultrahigh-energy-density nanosphere generated by microbubble implosion. Physics of Plasmas, 2019, 26, .	1.9	9

#	Article	IF	CITATIONS
37	Structured targets for detection of Megatesla-level magnetic fields through Faraday rotation of XFEL beams. Physics of Plasmas, 2019, 26, 013105.	1.9	17
38	Radiation reaction as an energy enhancement mechanism for laser-irradiated electrons in a strong plasma magnetic field. Scientific Reports, 2019, 9, 17181.	3.3	18
39	Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target. Plasma Physics and Controlled Fusion, 2019, 61, 035012.	2.1	16
40	Radiation rebound and quantum splash in electron-laser collisions. Physical Review Accelerators and Beams, 2019, 22, .	1.6	6
41	High-angle deflection of the energetic electrons by a voluminous magnetic structure in near-normal intense laser-plasma interactions. Physical Review E, 2018, 98, .	2.1	5
42	The unexpected role of evolving longitudinal electric fields in generating energetic electrons in relativistically transparent plasmas. New Journal of Physics, 2018, 20, 093024.	2.9	33
43	Generation of ultrahigh field by micro-bubble implosion. Scientific Reports, 2018, 8, 7537.	3.3	12
44	Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. Physics of Plasmas, 2018, 25, .	1.9	58
45	Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production. Plasma Physics and Controlled Fusion, 2018, 60, 054006.	2.1	43
46	Interaction of an electron with coherent dipole radiation: Role of convergence and anti-dephasing. Physics of Plasmas, 2018, 25, 053107.	1.9	6
47	Self-aligning concave relativistic plasma mirror with adjustable focus. Physics of Plasmas, 2017, 24, .	1.9	8
48	Breaking of dynamical adiabaticity in direct laser acceleration of electrons. Physics of Plasmas, 2017, 24, 023101.	1.9	5
49	Parametric decay of plasma waves near the upper-hybrid resonance. Physics of Plasmas, 2017, 24, 032119.	1.9	10
50	Nonlinear parametric resonance of relativistic electrons with a linearly polarized laser pulse in a plasma channel. Physics of Plasmas, 2017, 24, .	1.9	18
51	Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP. New Journal of Physics, 2017, 19, 023008.	2.9	25
52	Direct laser acceleration of electrons in plasma bubbles or ion channels with and without a longitudinal wakefield. AIP Conference Proceedings, 2017, , .	0.4	3
53	Kinetic simulations of X-B and O-X-B mode conversion and its deterioration at high input power. Nuclear Fusion, 2017, 57, 116024.	3.5	11
54	Particle-in-cell simulations of ion acceleration in high contrast and high intensity laser-solid target interactions at intensities above 1020 Wcm-2*. , 2017, , .		0

#	Article	IF	CITATIONS
55	Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas. Physics of Plasmas, 2016, 23, .	1.9	94
56	Spontaneous emergence of non-planar electron orbits during direct laser acceleration by a linearly polarized laser pulse. Physics of Plasmas, 2016, 23, .	1.9	19
57	Enhanced proton acceleration in an applied longitudinal magnetic field. New Journal of Physics, 2016, 18, 105011.	2.9	50
58	Universal scalings for laser acceleration of electrons in ion channels. Physics of Plasmas, 2016, 23, .	1.9	45
59	Generation of Superponderomotive Electrons in Multipicosecond Interactions of Kilojoule Laser Beams with Solid-Density Plasmas. Physical Review Letters, 2016, 116, 155001.	7.8	46
60	Enhanced Multi-MeV Photon Emission by a Laser-Driven Electron Beam in a Self-Generated Magnetic Field. Physical Review Letters, 2016, 116, 185003.	7.8	150
61	Criterion for correctly simulating relativistic electron motion in a high-intensity laser field. AIP Conference Proceedings, 2016, , .	0.4	2
62	Compact tunable Compton x-ray source from laser wakefield accelerator and plasma mirror. AIP Conference Proceedings, 2016, , .	0.4	2
63	Summary report of working group 2: Computations for accelerator physics. AIP Conference Proceedings, 2016, , .	0.4	2
64	Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas. Matter and Radiation at Extremes, 2016, 1, 82-87.	3.9	21
65	Novel aspects of direct laser acceleration of relativistic electrons. Journal of Plasma Physics, 2015, 81,	2.1	62
66	The effect of superluminal phase velocity on electron acceleration in a powerful electromagnetic wave. Physics of Plasmas, 2015, 22, 083114.	1.9	30
67	Kinetic simulations of X-B and O-X-B mode conversion. AIP Conference Proceedings, 2015, , .	0.4	2
68	Laser generation of ultra-short neutron bursts from high atomic number converters. Proceedings of SPIE, 2015, , .	0.8	4
69	Temporal resolution criterion for correctly simulating relativistic electron motion in a high-intensity laser field. Physics of Plasmas, 2015, 22, .	1.9	44
70	Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency. Physical Review Letters, 2015, 115, 025002.	7.8	43
71	Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror. Physics of Plasmas, 2015, 22, .	1.9	67
72	Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics. Physics of Plasmas, 2015, 22, .	1.9	39

#	Article	IF	CITATIONS
73	Ultrashort Pulsed Neutron Source. Physical Review Letters, 2014, 113, 184801.	7.8	123
74	Observation of Self-Sustaining Relativistic Ionization Wave Launched by a Sheath Field. Physical Review Letters, 2014, 112, 045002.	7.8	4
75	Enhancement of laser-driven electron acceleration in an ion channel. Physics of Plasmas, 2014, 21, .	1.9	62
76	Observation of Self-Sustaining Relativistic Ionization Wave Launched by Sheath Field. , 2014, , .		0
77	An Ultra-Short Pulsed Neutron Source. , 2014, , .		0
78	Generating "Superponderomotive―Electrons due to a Non-Wake-Field Interaction between a Laser Pulse and a Longitudinal Electric Field. Physical Review Letters, 2013, 111, 065002.	7.8	103
79	Spatio-temporal profiling of cluster mass fraction in a pulsed supersonic gas jet by frequency-domain holography. Journal of Applied Physics, 2013, 114, .	2.5	15
80	Parametric amplification of laser-driven acceleration in a plasma channel. , 2013, , .		4
81	In Situ Measurement of Cluster Mass Fraction in Supersonic Gas Jets by Frequency Domain Holography. , 2012, , .		0
82	Characterization of cluster/monomer ratio in pulsed supersonic gas jets. Applied Physics Letters, 2012, 100, 064101.	3.3	22
83	Parametric Amplification of Laser-Driven Electron Acceleration in Underdense Plasma. Physical Review Letters, 2012, 108, 145004.	7.8	96
84	Measurements and modeling of radio frequency field structures in a helicon plasma. Physics of Plasmas, 2011, 18, 013501.	1.9	29
85	Size distribution and mass fraction of microclusters in laser-irradiated plasmas. High Energy Density Physics, 2010, 6, 121-127.	1.5	15
86	Generation of Fast lons by Microclusters. Plasma and Fusion Research, 2010, 5, S2071-S2071.	0.7	5
87	Collisionless plasma expansion into vacuum: Two new twists on an old problem. Physics of Plasmas, 2009, 16, 055707.	1.9	25
88	Ambipolar acceleration of ions in a magnetic nozzle. Physics of Plasmas, 2008, 15, .	1.9	60
89	Magnetic nozzle and plasma detachment model for a steady-state flow. Physics of Plasmas, 2008, 15, .	1.9	35
90	Ion acceleration by hot electrons in microclusters. Physics of Plasmas, 2007, 14, 073105.	1.9	12

#	Article	IF	CITATIONS
91	Status of Magnetic Nozzle and Plasma Detachment Experiment. AIP Conference Proceedings, 2006, , .	0.4	8
92	Propagation of radially localized helicon waves in longitudinally nonuniform plasmas. Physics of Plasmas, 2006, 13, 062107.	1.9	4
93	Resonant power absorption in helicon plasma sources. Physics of Plasmas, 2006, 13, 123507.	1.9	46
94	Nonlinear physics of laser-irradiated microclusters. Physics of Plasmas, 2005, 12, 056706.	1.9	67
95	Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle. Physics of Plasmas, 2005, 12, 043504.	1.9	112
96	Harmonic generation in clusters. Physics of Plasmas, 2004, 11, 3349-3359.	1.9	44
97	Theoretical components of the VASIMR plasma propulsion concept. Physics of Plasmas, 2004, 11, 2942-2949.	1.9	100
98	Electron response in laser-irradiated microclusters. Plasma Physics Reports, 2003, 29, 593-597.	0.9	24
99	Ion kinetics in a magnetized plasma source. Physics of Plasmas, 2002, 9, 1015-1024.	1.9	9
100	l=1 diocotron instability of single charged plasmas in a cylindrical Penning trap with central conductor. AIP Conference Proceedings, 2002, , .	0.4	0
101	l=1 diocotron instability of single charged plasmas. Plasma Physics Reports, 2002, 28, 141-157.	0.9	9
102	Single-pass ion cyclotron resonance absorption. Physics of Plasmas, 2001, 8, 907-915.	1.9	30
103	Radially Localized Helicon Modes in Nonuniform Plasma. Physical Review Letters, 2000, 84, 3863-3866.	7.8	58
104	Electron acceleration using twisted laser wavefronts. Plasma Physics and Controlled Fusion, 0, , .	2.1	6
105	Electron-positron pair production in the collision of real photon beams with wide energy distributions. Plasma Physics and Controlled Fusion, 0, , .	2.1	7