List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2679492/publications.pdf Version: 2024-02-01

		1994	115
504	131,157	101	342
papers	citations	h-index	g-index
552	552	552	133880
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, The, 2012, 380, 2224-2260.	13.7	9,397
2	Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1789-1858.	13.7	8,569
3	Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1204-1222.	13.7	7,664
4	Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, The, 2012, 380, 2197-2223.	13.7	7,061
5	Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, The, 2012, 380, 2163-2196.	13.7	6,376
6	Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1545-1602.	13.7	5,298
7	Clobal, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Clobal Burden of Disease Study 2017. Lancet, The, 2018, 392, 1736-1788.	13.7	4,989
8	Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, The, 2015, 386, 743-800.	13.7	4,951
9	Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1459-1544.	13.7	4,934
10	Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. Journal of the American College of Cardiology, 2020, 76, 2982-3021.	2.8	4,468
11	Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1659-1724.	13.7	4,203
12	Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, The, 2017, 389, 1907-1918.	13.7	4,187
13	Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1223-1249.	13.7	3,928
14	Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1151-1210.	13.7	3,565
15	Clobal, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Clobal Burden of Disease Study 2019. Lancet Neurology, The, 2021, 20, 795-820.	10.2	2,308
16	Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1859-1922.	13.7	2,123
17	Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2018, 392, 1015-1035.	13.7	2,005
18	Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, The, 2019, 18, 439-458.	10.2	2,005

#	Article	IF	CITATIONS
19	Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1260-1344.	13.7	1,589
20	Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet, The, 2017, 389, 1885-1906.	13.7	1,281
21	Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 2020, 139, 105730.	10.0	1,247
22	Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respiratory Medicine,the, 2020, 8, 585-596.	10.7	1,049
23	How can airborne transmission of COVID-19 indoors be minimised?. Environment International, 2020, 142, 105832.	10.0	933
24	Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environmental Science & Technology, 2016, 50, 79-88.	10.0	886
25	Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science, 2009, 40, 256-269.	3.8	848
26	A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment, 2017, 579, 1000-1034.	8.0	815
27	It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clinical Infectious Diseases, 2020, 71, 2311-2313.	5.8	798
28	Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science, 2009, 40, 122-133.	3.8	778
29	Global, regional, and national levels of maternal mortality, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1775-1812.	13.7	740
30	Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1684-1735.	13.7	716
31	Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016. Lancet, The, 2018, 391, 2236-2271.	13.7	638
32	The rise of low-cost sensing for managing air pollution in cities. Environment International, 2015, 75, 199-205.	10.0	597
33	Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1084-1150.	13.7	573
34	Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1725-1774.	13.7	571
35	Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International, 2020, 141, 105794.	10.0	545
36	Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmospheric Environment, 2008, 42, 8113-8138.	4.1	531

#	Article	IF	CITATIONS
37	Modality of human expired aerosol size distributions. Journal of Aerosol Science, 2011, 42, 839-851.	3.8	523
38	A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmospheric Environment, 2006, 40, 5902-5928.	4.1	510
39	Transmission of SARSâ€CoVâ€⊋ by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, 2021, 31, 314-323.	4.3	505
40	Droplet fate in indoor environments, or can we prevent the spread of infection?. Indoor Air, 2006, 16, 335-347.	4.3	488
41	Ultrafine particles in cities. Environment International, 2014, 66, 1-10.	10.0	483
42	Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990–2015: a novel analysis from the Global Burden of Disease Study 2015. Lancet, The, 2017, 390, 231-266.	13.7	480
43	Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?. Environment International, 2018, 116, 286-299.	10.0	477
44	Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science, 2016, 354, 751-757.	12.6	462
45	Measuring the health-related Sustainable Development Goals in 188 countries: a baseline analysis from the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1813-1850.	13.7	413
46	Indoor aerosols: from personal exposure to risk assessment. Indoor Air, 2013, 23, 462-487.	4.3	347
47	The Mechanism of Breath Aerosol Formation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2009, 22, 229-237.	1.4	341
48	Concentrations of submicrometre particles from vehicle emissions near a major road. Atmospheric Environment, 2000, 34, 51-59.	4.1	340
49	Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 2091-2138.	13.7	335
50	Five insights from the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1135-1159.	13.7	335
51	Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respiratory Medicine,the, 2019, 7, 69-89.	10.7	326
52	Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environment International, 2020, 145, 106112.	10.0	306
53	Particle emission factors during cooking activities. Atmospheric Environment, 2009, 43, 3235-3242.	4.1	304
54	Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. Lancet. The. 2017, 390, 1423-1459.	13.7	284

#	Article	IF	CITATIONS
55	An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives. Sensors, 2016, 16, 1072.	3.8	270
56	Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere, 2002, 49, 1045-1058.	8.2	265
57	Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Journal of Hospital Infection, 2021, 110, 89-96.	2.9	264
58	A review of commuter exposure to ultrafine particles and its health effects. Atmospheric Environment, 2011, 45, 2611-2622.	4.1	261
59	Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 2017, 108, 75-83.	10.0	256
60	Particulate matter pollution over China and the effects of control policies. Science of the Total Environment, 2017, 584-585, 426-447.	8.0	252
61	The nexus between air pollution, green infrastructure and human health. Environment International, 2019, 133, 105181.	10.0	249
62	Respiratory health effects of diesel particulate matter. Respirology, 2012, 17, 201-212.	2.3	247
63	Global Survey of Antibiotic Resistance Genes in Air. Environmental Science & Technology, 2018, 52, 10975-10984.	10.0	227
64	Coronavirus Disease 2019 Patients in Earlier Stages Exhaled Millions of Severe Acute Respiratory Syndrome Coronavirus 2 Per Hour. Clinical Infectious Diseases, 2021, 72, e652-e654.	5.8	211
65	Particle Emission Characteristics of Office Printers. Environmental Science & Technology, 2007, 41, 6039-6045.	10.0	209
66	The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmospheric Measurement Techniques, 2018, 11, 4883-4890.	3.1	194
67	A paradigm shift to combat indoor respiratory infection. Science, 2021, 372, 689-691.	12.6	192
68	Submicrometer and Supermicrometer Particles from Diesel Vehicle Emissions. Environmental Science & Technology, 1998, 32, 2033-2042.	10.0	186
69	Ambient temperature and risk of cardiovascular hospitalization: An updated systematic review and meta-analysis. Science of the Total Environment, 2016, 550, 1084-1102.	8.0	179
70	The relationship between indoor and outdoor airborne particles in the residential environment. Atmospheric Environment, 2001, 35, 3463-3473.	4.1	176
71	Smart homes and the control of indoor air quality. Renewable and Sustainable Energy Reviews, 2018, 94, 705-718.	16.4	172
72	Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities. Atmospheric Chemistry and Physics, 2015, 15, 5929-5945.	4.9	161

#	Article	IF	CITATIONS
73	Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature, 2019, 574, 353-358.	27.8	161
74	Comprehensive characterization of aerosols in a subtropical urban atmosphere. Atmospheric Environment, 1998, 32, 2467-2478.	4.1	159
75	Particle deposition rates in residential houses. Atmospheric Environment, 2005, 39, 3891-3899.	4.1	152
76	Air pollution and risk of respiratory and cardiovascular hospitalizations in the most populous city in Vietnam. Science of the Total Environment, 2016, 557-558, 322-330.	8.0	149
77	Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air. Environmental Science and Pollution Research, 2010, 17, 1268-1278.	5.3	147
78	Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmospheric Environment, 2002, 36, 4375-4383.	4.1	146
79	Ozone modifies associations between temperature and cardiovascular mortality: analysis of the NMMAPS data. Occupational and Environmental Medicine, 2008, 65, 255-260.	2.8	143
80	Development and Validation of a UAV Based System for Air Pollution Measurements. Sensors, 2016, 16, 2202.	3.8	142
81	A study of the horizontal and vertical profile of submicrometer particles in relation to a busy road. Atmospheric Environment, 1999, 33, 1261-1274.	4.1	141
82	Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmospheric Environment, 2003, 37, 4195-4203.	4.1	138
83	Submicrometer and Supermicrometer Particulate Emission from Spark Ignition Vehicles. Environmental Science & Technology, 1998, 32, 3845-3852.	10.0	136
84	Personal exposure to ultrafine particles: The influence of time-activity patterns. Science of the Total Environment, 2014, 468-469, 903-907.	8.0	136
85	Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication. Science of the Total Environment, 2017, 576, 347-361.	8.0	134
86	An Investigation into the Characteristics and Formation Mechanisms of Particles Originating from the Operation of Laser Printers. Environmental Science & amp; Technology, 2009, 43, 1015-1022.	10.0	128
87	Children's well-being at schools: Impact of climatic conditions and air pollution. Environment International, 2016, 94, 196-210.	10.0	128
88	Shipping emissions and their impacts on air quality in China. Science of the Total Environment, 2017, 581-582, 186-198.	8.0	128
89	A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane, Australia. Science of the Total Environment, 2003, 312, 89-101.	8.0	122
90	Human exposure to ozone in school and office indoor environments. Environment International, 2018, 119, 503-514.	10.0	122

#	Article	IF	CITATIONS
91	Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects. Environmental Pollution, 2013, 180, 246-250.	7.5	119
92	Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environment International, 2021, 147, 106326.	10.0	119
93	Green infrastructure for air quality improvement in street canyons. Environment International, 2021, 146, 106288.	10.0	118
94	Influence of Diesel Fuel Sulfur on Nanoparticle Emissions from City Buses. Environmental Science & Technology, 2006, 40, 1314-1320.	10.0	117
95	Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom. Atmospheric Environment, 2008, 42, 757-768.	4.1	117
96	New directions: Air pollution challenges for developing megacities like Delhi. Atmospheric Environment, 2015, 122, 657-661.	4.1	117
97	Children exposure assessment to ultrafine particles and black carbon: The role of transport and cooking activities. Atmospheric Environment, 2013, 79, 53-58.	4.1	116
98	Indoor air quality and energy management through real-time sensing in commercial buildings. Energy and Buildings, 2016, 111, 145-153.	6.7	116
99	Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Science of the Total Environment, 2016, 560-561, 150-159.	8.0	111
100	Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other?. Environment International, 2019, 129, 118-135.	10.0	110
101	Low-cost sensors as an alternative for long-term air quality monitoring. Environmental Research, 2020, 185, 109438.	7.5	110
102	Indoor hospital air and the impact of ventilation on bioaerosols: a systematic review. Journal of Hospital Infection, 2019, 103, 175-184.	2.9	109
103	Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks. Environmental Science & Technology, 2022, 56, 1125-1137.	10.0	109
104	Tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. Atmospheric Environment, 2011, 45, 6216-6224.	4.1	106
105	New particle formation in China: Current knowledge and further directions. Science of the Total Environment, 2017, 577, 258-266.	8.0	106
106	Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China. Environmental Pollution, 2018, 238, 452-461.	7.5	102
107	Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel. Science of the Total Environment, 2005, 345, 93-98.	8.0	101
108	Observation of new particle formation in subtropical urban environment. Atmospheric Chemistry and Physics, 2011, 11, 3823-3833.	4.9	101

LIDIA MORAWSKA

#	Article	IF	CITATIONS
109	Physical characteristics of the indoor environment that affect health and wellbeing in healthcare facilities: a review. Intelligent Buildings International, 2013, 5, 3-25.	2.3	101
110	Methodology for assessing exposure and impacts of air pollutants in school children: Data collection, analysis and health effects – A literature review. Atmospheric Environment, 2011, 45, 813-823.	4.1	99
111	Community greenness, blood pressure, and hypertension in urban dwellers: The 33 Communities Chinese Health Study. Environment International, 2019, 126, 727-734.	10.0	99
112	Individual dose and exposure of Italian children to ultrafine particles. Science of the Total Environment, 2012, 438, 271-277.	8.0	96
113	Ultrafine Particles in Indoor Air of a School: Possible Role of Secondary Organic Aerosols. Environmental Science & Technology, 2009, 43, 9103-9109.	10.0	95
114	Quantifying risks and interventions that have affected the burden of lower respiratory infections among children younger than 5 years: an analysis for the Global Burden of Disease Study 2017. Lancet Infectious Diseases, The, 2020, 20, 60-79.	9.1	95
115	The association between particulate air pollution and respiratory admissions among young children in Hanoi, Vietnam. Science of the Total Environment, 2017, 578, 249-255.	8.0	94
116	The quest for improved air quality may push China to continue its CO ₂ reduction beyond the Paris Commitment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29535-29542.	7.1	93
117	Does temperature modify short-term effects of ozone on total mortality in 60 large eastern US communities? — An assessment using the NMMAPS data. Environment International, 2008, 34, 451-458.	10.0	92
118	Influence of ventilation and filtration on indoor particle concentrations in urban office buildings. Atmospheric Environment, 2013, 79, 41-52.	4.1	92
119	The modality of particle size distributions of environmental aerosols. Atmospheric Environment, 1999, 33, 4401-4411.	4.1	91
120	Real-time measurement of bacterial aerosols with the UVAPS: performance evaluation. Journal of Aerosol Science, 2003, 34, 301-317.	3.8	91
121	New Directions: Can a "blue sky―return to Indian megacities?. Atmospheric Environment, 2013, 71, 198-201.	4.1	91
122	School Children's Personal Exposure to Ultrafine Particles in the Urban Environment. Environmental Science & Technology, 2014, 48, 113-120.	10.0	91
123	Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China. Science of the Total Environment, 2017, 584-585, 1162-1174.	8.0	91
124	Diesel Bus Emissions Measured in a Tunnel Study. Environmental Science & Technology, 2004, 38, 6701-6709.	10.0	89
125	Breath-, air- and surface-borne SARS-CoV-2 in hospitals. Journal of Aerosol Science, 2021, 152, 105693.	3.8	89
126	Human exposure to NO2 in school and office indoor environments. Environment International, 2019, 130, 104887.	10.0	86

#	Article	IF	CITATIONS
127	Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Respiratory Medicine,the, 2021, 9, 1030-1049.	10.7	86
128	Dependence of the radon emanation coefficient on radium distribution and internal structure of the material. Geochimica Et Cosmochimica Acta, 1993, 57, 1783-1797.	3.9	85
129	Volatility Characterization of Cooking-Generated Aerosol Particles. Aerosol Science and Technology, 2011, 45, 1069-1077.	3.1	85
130	Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environment International, 2018, 114, 167-180.	10.0	85
131	Evaluation of Ultrafine Particle Emissions from Laser Printers Using Emission Test Chambers. Environmental Science & Technology, 2008, 42, 4338-4343.	10.0	84
132	Determination of average emission factors for vehicles on a busy road. Atmospheric Environment, 2003, 37, 465-474.	4.1	83
133	Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress. Journal of Aerosol Science, 2003, 34, 1711-1727.	3.8	83
134	Exposure to particle number, surface area and PM concentrations in pizzerias. Atmospheric Environment, 2010, 44, 3963-3969.	4.1	83
135	The impact of marine shipping and its DECA control on air quality in the Pearl River Delta, China. Science of the Total Environment, 2018, 625, 1476-1485.	8.0	83
136	Particle and gaseous emissions from compressed natural gas and ultralow sulphur diesel-fuelled buses at four steady engine loads. Science of the Total Environment, 2009, 407, 2845-2852.	8.0	82
137	Airborne particle concentrations at schools measured at different spatial scales. Atmospheric Environment, 2013, 67, 38-45.	4.1	82
138	Room ventilation and the risk of airborne infection transmission in 3Âhealth care settings within a large teaching hospital. American Journal of Infection Control, 2011, 39, 866-872.	2.3	81
139	An inventory of particle and gaseous emissions from large aircraft thrust engine operations at an airport. Atmospheric Environment, 2011, 45, 3500-3507.	4.1	81
140	Method for measuring the hygroscopic behaviour of lower volatility fractions in an internally mixed aerosol. Journal of Aerosol Science, 2004, 35, 443-455.	3.8	80
141	New particle formation and growth at a remote, sub-tropical coastal location. Atmospheric Chemistry and Physics, 2009, 9, 7607-7621.	4.9	79
142	Viability of <i>Pseudomonas aeruginosa</i> in cough aerosols generated by persons with cystic fibrosis. Thorax, 2014, 69, 740-745.	5.6	79
143	Particle and Gaseous Emissions from Commercial Aircraft at Each Stage of the Landing and Takeoff Cycle. Environmental Science & Cycle. Environmental Scienc	10.0	78
144	Ambient PM1 air pollution and cardiovascular disease prevalence: Insights from the 33 Communities Chinese Health Study. Environment International, 2019, 123, 310-317.	10.0	77

LIDIA MORAWSKA

#	Article	IF	CITATIONS
145	The effect of temperature and humidity on size segregated traffic exhaust particle emissions. Atmospheric Environment, 2008, 42, 2369-2382.	4.1	76
146	Vacuum Cleaner Emissions as a Source of Indoor Exposure to Airborne Particles and Bacteria. Environmental Science & Technology, 2012, 46, 534-542.	10.0	76
147	A comparison of submicrometer particle dose between Australian and Italian people. Environmental Pollution, 2012, 169, 183-189.	7.5	75
148	Association between community greenness and obesity in urban-dwelling Chinese adults. Science of the Total Environment, 2020, 702, 135040.	8.0	75
149	Experimental study of the deposition of combustion aerosols in the human respiratory tract. Journal of Aerosol Science, 2005, 36, 939-957.	3.8	73
150	Theoretical analysis of the motion and evaporation of exhaled respiratory droplets of mixed composition. Journal of Aerosol Science, 2011, 42, 1-10.	3.8	73
151	Characterization of elemental and polycyclic aromatic hydrocarbon compositions of urban air in Brisbane. Atmospheric Environment, 2005, 39, 463-476.	4.1	72
152	Effect of Cabin Ventilation Rate on Ultrafine Particle Exposure Inside Automobiles. Environmental Science & Technology, 2010, 44, 3546-3551.	10.0	72
153	Vertical particle concentration profiles around urban office buildings. Atmospheric Chemistry and Physics, 2012, 12, 5017-5030.	4.9	72
154	Lung cancer risk of airborne particles for Italian population. Environmental Research, 2015, 142, 443-451.	7.5	72
155	Ventilation procedures to minimize the airborne transmission of viruses in classrooms. Building and Environment, 2021, 202, 108042.	6.9	72
156	Close proximity risk assessment for SARS-CoV-2 infection. Science of the Total Environment, 2021, 794, 148749.	8.0	72
157	New directions: From biofuels to wood stoves: The modern and ancient air quality challenges in the megacity of São Paulo. Atmospheric Environment, 2016, 140, 364-369.	4.1	71
158	PARTICLE EMISSIONS FROM COMPRESSED NATURAL GAS ENGINES. Journal of Aerosol Science, 2000, 31, 403-413.	3.8	69
159	Relation between particle mass and number for submicrometer airborne particles. Atmospheric Environment, 1999, 33, 1983-1990.	4.1	67
160	Effect of Ventilation and Filtration on Submicrometer Particles in an Indoor Environment. Indoor Air, 2000, 10, 19-26.	4.3	66
161	Spatiotemporal variation of PM1 pollution in China. Atmospheric Environment, 2018, 178, 198-205.	4.1	65
162	A model for determination of motor vehicle emission factors from on-road measurements with a focus on submicrometer particles. Science of the Total Environment, 2001, 264, 241-255.	8.0	64

#	Article	IF	CITATIONS
163	Associations of greenness with diabetes mellitus and glucose-homeostasis markers: The 33 Communities Chinese Health Study. International Journal of Hygiene and Environmental Health, 2019, 222, 283-290.	4.3	63
164	Could fighting airborne transmission be the next line of defence against COVID-19 spread?. City and Environment Interactions, 2019, 4, 100033.	4.2	62
165	Performance of UVAPS with respect to detection of airborne fungi. Journal of Aerosol Science, 2008, 39, 175-189.	3.8	61
166	Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment. Environmental Pollution, 2016, 208, 110-117.	7.5	61
167	Exposure to welding particles in automotive plants. Journal of Aerosol Science, 2011, 42, 295-304.	3.8	60
168	Hygroscopic behavior of partially volatilized coastal marine aerosols using the volatilization and humidification tandem differential mobility analyzer technique. Journal of Geophysical Research, 2005, 110, .	3.3	59
169	The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel buses. Fuel, 2007, 86, 1831-1839.	6.4	59
170	Modality in ambient particle size distributions and its potential as a basis for developing air quality regulation. Atmospheric Environment, 2008, 42, 1617-1628.	4.1	59
171	Ozone-Initiated Particle Formation, Particle Aging, and Precursors in a Laser Printer. Environmental Science & Technology, 2012, 46, 704-712.	10.0	59
172	Volatile Organic Compounds: Characteristics, distribution and sources in urban schools. Atmospheric Environment, 2015, 106, 485-491.	4.1	58
173	A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol. Atmospheric Environment, 2006, 40, 3111-3122.	4.1	57
174	Performance assessment of UVAPS: Influence of fungal spore age and air exposure. Journal of Aerosol Science, 2007, 38, 83-96.	3.8	57
175	Association Between Residential Greenness, Cardiometabolic Disorders, and Cardiovascular Disease Among Adults in China. JAMA Network Open, 2020, 3, e2017507.	5.9	57
176	Exposure to Particles from Laser Printers Operating within Office Workplaces. Environmental Science & Contended Science & Scie	10.0	55
177	Environmental contamination and hospital-acquired infection: factors that are easily overlooked. Indoor Air, 2015, 25, 462-474.	4.3	55
178	Spatial variation in particle number size distributions in a large metropolitan area. Atmospheric Chemistry and Physics, 2008, 8, 1127-1138.	4.9	53
179	JEM Spotlight: Environmental monitoring of airborne nanoparticles. Journal of Environmental Monitoring, 2009, 11, 1758.	2.1	53
180	Temperature Enhanced Effects of Ozone on Cardiovascular Mortality in 95 Large US Communities, 1987–2000: Assessment Using the NMMAPS Data. Archives of Environmental and Occupational Health, 2009, 64, 177-184.	1.4	52

#	Article	IF	CITATIONS
181	Inhaled particle counts on bicycle commute routes of low and high proximity to motorised traffic. Atmospheric Environment, 2012, 61, 197-203.	4.1	52
182	Combustion sources of particles: 2. Emission factors and measurement methods. Chemosphere, 2002, 49, 1059-1074.	8.2	51
183	Differing toxicity of ambient particulate matter (PM) in global cities. Atmospheric Environment, 2019, 212, 305-315.	4.1	51
184	Association between residential greenness and metabolic syndrome in Chinese adults. Environment International, 2020, 135, 105388.	10.0	51
185	Control strategies for sub-micrometer particles indoors: model study of air filtration and ventilation. Indoor Air, 2003, 13, 96-105.	4.3	50
186	Performance Evaluation of the UVAPS in Measuring Biological Aerosols: Fluorescence Spectra from NAD(P)H Coenzymes and Riboflavin. Aerosol Science and Technology, 2004, 38, 354-364.	3.1	50
187	Emissions from a vehicle fitted to operate on either petrol or compressed natural gas. Science of the Total Environment, 2004, 323, 179-194.	8.0	50
188	Quantification of Particle Number Emission Factors for Motor Vehicles from On-Road Measurements. Environmental Science & Technology, 2005, 39, 9130-9139.	10.0	50
189	Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. Science of the Total Environment, 2017, 584-585, 849-855.	8.0	50
190	A review of emissions and concentrations of particulate matter in the three major metropolitan areas of Brazil. Journal of Transport and Health, 2017, 4, 53-72.	2.2	50
191	Influence of fuel composition on polycyclic aromatic hydrocarbon emissions from a fleet of in-service passenger cars. Atmospheric Environment, 2007, 41, 150-160.	4.1	49
192	Deposition rates of fungal spores in indoor environments, factors effecting them and comparison with non-biological aerosols. Atmospheric Environment, 2008, 42, 7141-7154.	4.1	49
193	Particle doses in the pulmonary lobes of electronic and conventional cigarette users. Environmental Pollution, 2015, 202, 24-31.	7.5	49
194	Source specific exposure and risk assessment for indoor aerosols. Science of the Total Environment, 2019, 668, 13-24.	8.0	49
195	Air ion concentrations in various urban outdoor environments. Atmospheric Environment, 2010, 44, 2186-2193.	4.1	48
196	Utility of an alternative bicycle commute route of lower proximity to motorised traffic in decreasing exposure to ultra-fine particles, respiratory symptoms and airway inflammation – a structured exposure experiment. Environmental Health, 2013, 12, 29.	4.0	48
197	Characterization of particle emission from laser printers. Science of the Total Environment, 2017, 586, 623-630.	8.0	48
198	Face Masks and Cough Etiquette Reduce the Cough Aerosol Concentration of <i>Pseudomonas aeruginosa</i> in People with Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 348-355.	5.6	48

#	Article	IF	CITATIONS
199	Mobile phones as monitors of personal exposure to air pollution: Is this the future?. PLoS ONE, 2018, 13, e0193150.	2.5	48
200	Size characteristics and ageing of the environmental tobacco smoke. Science of the Total Environment, 1997, 196, 43-55.	8.0	47
201	Quantification of Particle Number and Mass Emission Factors from Combustion of Queensland Trees. Environmental Science & Technology, 2006, 40, 5696-5703.	10.0	47
202	Quantification of the relationship between fuser roller temperature and laser printer emissions. Journal of Aerosol Science, 2010, 41, 523-530.	3.8	47
203	Long-term ambient air pollution and lung function impairment in Chinese children from a high air pollution range area: The Seven Northeastern Cities (SNEC) study. Atmospheric Environment, 2016, 138, 144-151.	4.1	47
204	Indoor Air Quality in Naturally Ventilated Italian Classrooms. Atmosphere, 2015, 6, 1652-1675.	2.3	46
205	In-car particulate matter exposure across ten global cities. Science of the Total Environment, 2021, 750, 141395.	8.0	46
206	The role of sulphates and organic vapours in growth of newly formed particles in a eucalypt forest. Atmospheric Chemistry and Physics, 2010, 10, 2919-2926.	4.9	45
207	A Comparative Investigation of Ultrafine Particle Number and Mass Emissions from a Fleet of On-Road Diesel and CNG Buses. Environmental Science & Technology, 2008, 42, 6736-6742.	10.0	44
208	Characteristics of airborne ultrafine and coarse particles during the Australian dust storm of 23 September 2009. Atmospheric Environment, 2011, 45, 3996-4001.	4.1	44
209	Variations in coil temperature/power and eâ€liquid constituents change size and lung deposition of particles emitted by an electronic cigarette. Physiological Reports, 2019, 7, e14093.	1.7	44
210	Burden of injury along the development spectrum: associations between the Socio-demographic Index and disability-adjusted life year estimates from the Global Burden of Disease Study 2017. Injury Prevention, 2020, 26, i12-i26.	2.4	44
211	Trends in size classified particle number concentration in subtropical Brisbane, Australia, based on a 5 year study. Atmospheric Environment, 2007, 41, 1064-1079.	4.1	43
212	Is PM1 similar to PM2.5? A new insight into the association of PM1 and PM2.5 with children's lung function. Environment International, 2020, 145, 106092.	10.0	43
213	Environmental Tobacco Smoke Deposition in the Human Respiratory Tract: Differences between Experimental and Theoretical Approaches. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2001, 14, 317-326.	1.2	42
214	Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens. Waste Management, 2015, 37, 75-81.	7.4	42
215	Independent Validation of National Satellite-Based Land-Use Regression Models for Nitrogen Dioxide Using Passive Samplers. Environmental Science & Technology, 2016, 50, 12331-12338.	10.0	42
216	Greenness around schools associated with lower risk of hypertension among children: Findings from the Seven Northeastern Cities Study in China. Environmental Pollution, 2020, 256, 113422.	7.5	42

#	Article	IF	CITATIONS
217	Respiratory infection risk-based ventilation design method. Building and Environment, 2021, 206, 108387.	6.9	42
218	Effect of face velocity and the nature of aerosol on the collection of submicrometer particles by electrostatic precipitator. Indoor Air, 2002, 12, 129-137.	4.3	41
219	Using the Generalised Additive Model to model the particle number count of ultrafine particles. Atmospheric Environment, 2011, 45, 5934-5945.	4.1	41
220	The risk of airborne influenza transmission in passenger cars. Epidemiology and Infection, 2012, 140, 474-478.	2.1	41
221	Associations of serum perfluoroalkyl acid levels with T-helper cell-specific cytokines in children: By gender and asthma status. Science of the Total Environment, 2016, 559, 166-173.	8.0	41
222	Determination of the vertical profile of particle number concentration adjacent to a motorway using an unmanned aerial vehicle. Environmental Pollution, 2017, 230, 134-142.	7.5	41
223	Development of a particle number and particle mass vehicle emissions inventory for an urban fleet. Environmental Modelling and Software, 2009, 24, 1323-1331.	4.5	40
224	Estimating the spatiotemporal variation of NO2 concentration using an adaptive neuro-fuzzy inference system. Environmental Modelling and Software, 2018, 100, 222-235.	4.5	40
225	Investigations into factors affecting personal exposure to particles in urban microenvironments using low-cost sensors. Environment International, 2018, 120, 496-504.	10.0	40
226	Composition and Morphology of Particle Emissions from in-use Aircraft during Takeoff and Landing. Environmental Science & Technology, 2013, 47, 5235-5242.	10.0	39
227	Characteristics of ultrafine particle sources and deposition rates in primary school classrooms. Atmospheric Environment, 2014, 94, 28-35.	4.1	39
228	A satellite-based model for estimating PM2.5 concentration in a sparsely populated environment using soft computing techniques. Environmental Modelling and Software, 2017, 88, 84-92.	4.5	39
229	On the interpretation of bioaerosol exposure measurements and impacts on health. Journal of the Air and Waste Management Association, 2019, 69, 789-804.	1.9	39
230	Deposition of radon progeny on indoor surfaces. Journal of Aerosol Science, 1996, 27, 305-312.	3.8	38
231	Assessment and application of clustering techniques to atmospheric particle number size distribution for the purpose of source apportionment. Atmospheric Chemistry and Physics, 2014, 14, 11883-11892.	4.9	38
232	Air pollution and fasting blood glucose: A longitudinal study in China. Science of the Total Environment, 2016, 541, 750-755.	8.0	38
233	Efficiency of ionizers in removing airborne particles in indoor environments. Journal of Electrostatics, 2017, 90, 79-84.	1.9	38
234	Association Between Greenness Surrounding Schools and Kindergartens and Attention-Deficit/Hyperactivity Disorder in Children in China. JAMA Network Open, 2019, 2, e1917862.	5.9	38

#	Article	lF	CITATIONS
235	Long-term trends in PM2.5 mass and particle number concentrations in urban air: The impacts of mitigation measures and extreme events due to changing climates. Environmental Pollution, 2020, 263, 114500.	7.5	38
236	Relation between Indoor and Outdoor Exposure to Fine Particles near a Busy Arterial Road. Indoor Air, 1999, 9, 75-84.	4.3	37
237	Application of Multicriteria Decision Making Methods to Air Quality in the Microenvironments of Residential Houses in Brisbane, Australia. Environmental Science & Technology, 2004, 38, 2609-2616.	10.0	37
238	Novel Method for On-Road Emission Factor Measurements Using a Plume Capture Trailer. Environmental Science & Technology, 2007, 41, 574-579.	10.0	37
239	Air ion concentrations under overhead high-voltage transmission lines. Atmospheric Environment, 2008, 42, 1846-1856.	4.1	37
240	Determination of particle concentration in the breathing zone for four different types of office ventilation systems. Building and Environment, 2009, 44, 904-911.	6.9	37
241	Human exposure to air contaminants in sports environments. Indoor Air, 2020, 30, 1109-1129.	4.3	37
242	Size-selected particles in an urban atmosphere of Brisbane, Australia. Atmospheric Environment, 2002, 36, 4277-4288.	4.1	36
243	Spatial Variation of Particle Number Concentration in School Microscale Environments and Its Impact on Exposure Assessment. Environmental Science & amp; Technology, 2013, 47, 5251-5258.	10.0	36
244	Co-optimisation of indoor environmental quality and energy consumption within urban office buildings. Energy and Buildings, 2014, 85, 225-234.	6.7	36
245	Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain. Environment International, 2016, 88, 142-149.	10.0	36
246	Experimental Deposition of Environmental Tobacco Smoke Submicrometer Particulate Matter in the Human Respiratory Tract. AIHA Journal, 1999, 60, 334-339.	0.4	35
247	Spatial distribution of submicrometre particles and CO in an urban microscale environment. Atmospheric Environment, 2005, 39, 3977-3988.	4.1	35
248	Putting a balance on the aerosolization debate around SARS-CoV-2. Journal of Hospital Infection, 2020, 105, 569-570.	2.9	35
249	Size-selective assessment of airborne particles in swine confinement building with the UVAPS. Atmospheric Environment, 2004, 38, 3893-3901.	4.1	34
250	Variation in indoor particle number and PM2.5 concentrations in a radio station surrounded by busy roads before and after an upgrade of the HVAC system. Building and Environment, 2009, 44, 76-84.	6.9	34
251	Airborne viable fungi in school environments in different climatic regions – A review. Atmospheric Environment, 2015, 104, 186-194.	4.1	34
252	Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia. Environment International, 2016, 91, 230-242.	10.0	34

#	Article	IF	CITATIONS
253	Face Masks Reduce the Release of <i>Pseudomonas aeruginosa</i> Cough Aerosols When Worn for Clinically Relevant Periods. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1339-1342.	5.6	34
254	Can wastewater-based epidemiology be used to evaluate the health impact of temperature? – An exploratory study in an Australian population. Environmental Research, 2017, 156, 113-119.	7.5	33
255	Maternal exposure to ambient air pollution and congenital heart defects in China. Environment International, 2021, 153, 106548.	10.0	33
256	Design approaches for promoting beneficial indoor environments in healthcare facilities: a review. Intelligent Buildings International, 2013, 5, 26-50.	2.3	32
257	Development of a land use regression model for daily NO 2 and NO x concentrations in the Brisbane metropolitan area, Australia. Environmental Modelling and Software, 2017, 95, 168-179.	4.5	32
258	Observations of particles at their formation sizes in Beijing, China. Atmospheric Chemistry and Physics, 2017, 17, 8825-8835.	4.9	32
259	Low-level summertime isoprene observed at a forested mountaintop site in southern China: implications for strong regional atmospheric oxidative capacity. Atmospheric Chemistry and Physics, 2018, 18, 14417-14432.	4.9	32
260	Characterization of the particle emission from a ship operating at sea using an unmanned aerial vehicle. Atmospheric Measurement Techniques, 2019, 12, 691-702.	3.1	32
261	The airborne contagiousness of respiratory viruses: A comparative analysis and implications for mitigation. Geoscience Frontiers, 2022, 13, 101285.	8.4	32
262	Chapter two: methodologies for characterisation of combustion sources and for quantification of their emissions. Chemosphere, 2002, 49, 903-922.	8.2	31
263	Source apportionment of ultrafine and fine particle concentrations in Brisbane, Australia. Environmental Science and Pollution Research, 2012, 19, 2942-2950.	5.3	31
264	Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	31
265	Effects of in utero and Postnatal Exposure to Secondhand Smoke on Lung Function by Gender and Asthma Status: The Seven Northeastern Cities (SNEC) Study. Respiration, 2017, 93, 189-197.	2.6	31
266	Seasonal association between ambient ozone and hospital admission for respiratory diseases in Hanoi, Vietnam. PLoS ONE, 2018, 13, e0203751.	2.5	31
267	Face masks could raise pollution risks. Nature, 2019, 574, 29-30.	27.8	31
268	Spatial variation of airborne pollutant concentrations in Brisbane, Australia and its potential impact on population exposure assessment. Atmospheric Environment, 2002, 36, 3545-3555.	4.1	30
269	A Plume Capture Technique for the Remote Characterization of Aircraft Engine Emissions. Environmental Science & Technology, 2008, 42, 4850-4856.	10.0	30
270	On-road ultrafine particle concentration in the M5 East road tunnel, Sydney, Australia. Atmospheric Environment, 2009, 43, 3510-3519.	4.1	30

#	Article	IF	CITATIONS
271	Volatile Properties of Particles Emitted by Compressed Natural Gas and Diesel Buses during Steady-State and Transient Driving Modes. Environmental Science & Technology, 2012, 46, 196-203.	10.0	30
272	The impact of flood and post-flood cleaning on airborne microbiological and particle contamination in residential houses. Environment International, 2014, 69, 9-17.	10.0	30
273	Sources and dynamics of fluorescent particles in hospitals. Indoor Air, 2017, 27, 988-1000.	4.3	30
274	Emissions of particulate matter, carbon monoxide and nitrogen oxides from the residential burning of waste paper briquettes and other fuels. Environmental Research, 2018, 167, 536-543.	7.5	30
275	The physics of particle formation and deposition during breathing. Nature Reviews Physics, 2021, 3, 300-301.	26.6	30
276	Air pollution and COVID-19: clearing the air and charting a post-pandemic course: a joint workshop report of ERS, ISEE, HEI and WHO. European Respiratory Journal, 2021, 58, 2101063.	6.7	30
277	Critical Analysis of High Particle Number Emissions from Accelerating Compressed Natural Gas Buses. Environmental Science & Technology, 2010, 44, 3724-3731.	10.0	29
278	Association between indoor air pollution measurements and respiratory health in women and children in Lao PDR. Indoor Air, 2011, 21, 25-35.	4.3	29
279	Recycling concrete: An undiscovered source of ultrafine particles. Atmospheric Environment, 2014, 90, 51-58.	4.1	29
280	Increase in particle number emissions from motor vehicles due to interruption of steady traffic flow. Transportation Research, Part D: Transport and Environment, 2009, 14, 521-526.	6.8	28
281	The health impacts of waste-to-energy emissions: a systematic review of the literature. Environmental Research Letters, 2020, 15, 123006.	5.2	28
282	Low-cost PM2.5 Sensors: An Assessment of Their Suitability for Various Applications. Aerosol and Air Quality Research, 2020, , .	2.1	28
283	Dispersion of Particles from Vehicle Emissions Around High- and Low-Rise Buildings. Indoor Air, 2002, 12, 64-71.	4.3	27
284	Size distribution of particles emitted from grass fires in the Northern Territory, Australia. Atmospheric Environment, 2007, 41, 8609-8619.	4.1	27
285	An investigation of nucleation events in a coastal urban environment in the Southern Hemisphere. Atmospheric Chemistry and Physics, 2009, 9, 7877-7888.	4.9	27
286	Derivation of motor vehicle tailpipe particle emission factors suitable for modelling urban fleet emissions and air quality assessments. Environmental Science and Pollution Research, 2010, 17, 724-739.	5.3	27
287	Polybrominated diphenyl ethers (PBDEs) in dust from primary schools in South East Queensland, Australia. Environmental Research, 2015, 142, 135-140.	7.5	27
288	Nocturnal new particle formation events in urban environments. Atmospheric Chemistry and Physics, 2017, 17, 521-530.	4.9	27

LIDIA MORAWSKA

#	Article	IF	CITATIONS
289	Emissions of particulate matters, volatile organic compounds and polycyclic aromatic hydrocarbons from warm and hot asphalt mixes. Journal of Cleaner Production, 2020, 275, 123094.	9.3	27
290	Carbon dioxide emissions from diesel and compressed natural gas buses during acceleration. Transportation Research, Part D: Transport and Environment, 2010, 15, 247-253.	6.8	26
291	Children's personal exposure to air pollution in rural villages in Bhutan. Environmental Research, 2015, 140, 691-698.	7.5	26
292	Characteristics of school children's personal exposure to ultrafine particles in Heshan, Pearl River Delta, China – A pilot study. Environment International, 2019, 132, 105134.	10.0	26
293	The state of science on severe air pollution episodes: Quantitative and qualitative analysis. Environment International, 2021, 156, 106732.	10.0	26
294	The nexus between in-car aerosol concentrations, ventilation and the risk of respiratory infection. Environment International, 2021, 157, 106814.	10.0	26
295	Experimental Deposition of Environmental Tobacco Smoke Submicrometer Particulate Matter in the Human Respiratory Tract. AIHA Journal, 1999, 60, 334-339.	0.4	26
296	Metrological Performances of a Diffusion Charger Particle Counter for Personal Monitoring. Aerosol and Air Quality Research, 2014, 14, 156-167.	2.1	26
297	Characteristics of airborne particles and the factors affecting them at bus stations. Atmospheric Environment, 2011, 45, 611-620.	4.1	25
298	Traffic-related fine and ultrafine particle exposures of professional drivers and illness: An opportunity to better link exposure science and epidemiology to address an occupational hazard?. Environment International, 2012, 49, 110-114.	10.0	25
299	Microbial Contents of Vacuum Cleaner Bag Dust and Emitted Bioaerosols and Their Implications for Human Exposure Indoors. Applied and Environmental Microbiology, 2013, 79, 6331-6336.	3.1	25
300	Endotoxin levels and contribution factors of endotoxins in resident, school, and office environments — A review. Atmospheric Environment, 2016, 142, 360-369.	4.1	25
301	Particle and bioaerosol characteristics in a paediatric intensive care unit. Environment International, 2017, 107, 89-99.	10.0	25
302	Variability of airborne particle metrics in an urban area. Environmental Pollution, 2017, 220, 625-635.	7.5	25
303	Daily CO2 Emission Reduction Indicates the Control of Activities to Contain COVID-19 in China. Innovation(China), 2020, 1, 100062.	9.1	25
304	Modeling the urban heat island mitigation effect of cool coatings in realistic urban morphology. Journal of Cleaner Production, 2020, 264, 121560.	9.3	25
305	Associations of Particulate Matter Sizes and Chemical Constituents with Blood Lipids: A Panel Study in Guangzhou, China. Environmental Science & amp; Technology, 2021, 55, 5065-5075.	10.0	25
306	Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area. Atmospheric Research, 2017, 194, 178-189.	4.1	25

#	Article	IF	CITATIONS
307	Quantitative Assessment of the Effect of Surface Deposition and Coagulation on the Dynamics of Submicrometer Particles Indoors. Aerosol Science and Technology, 2003, 37, 425-436.	3.1	24
308	Application of the VH-TDMA technique to coastal ambient aerosols. Geophysical Research Letters, 2004, 31, .	4.0	24
309	Deposition of combustion aerosols in the human respiratory tract: Comparison of theoretical predictions with experimental data considering nonspherical shape. Inhalation Toxicology, 2009, 21, 1154-1164.	1.6	24
310	Concentration and oxidative potential of on-road particle emissions and their relationship with traffic composition: Relevance to exposure assessment. Atmospheric Environment, 2012, 59, 533-539.	4.1	24
311	Bicycle Commuting and Exposure to Air Pollution: A Questionnaire-Based Investigation of Perceptions, Symptoms, and Risk Management Strategies. Journal of Physical Activity and Health, 2015, 12, 490-499.	2.0	24
312	Increased close proximity airborne transmission of the SARS-CoV-2 Delta variant. Science of the Total Environment, 2022, 816, 151499.	8.0	24
313	In-kitchen aerosol exposure in twelve cities across the globe. Environment International, 2022, 162, 107155.	10.0	24
314	The effect of housing characteristics and occupant activities on the respiratory health of women and children in Lao PDR. Science of the Total Environment, 2011, 409, 1378-1384.	8.0	23
315	Energy-Pollution Nexus for Urban Buildings. Environmental Science & Technology, 2013, 47, 7591-7592.	10.0	23
316	Airborne culturable fungi in naturally ventilated primary school environments in a subtropical climate. Atmospheric Environment, 2015, 106, 412-418.	4.1	23
317	A pilot study of traditional indoor biomass cooking and heating in rural Bhutan: gas and particle concentrations and emission rates. Indoor Air, 2017, 27, 160-168.	4.3	23
318	The influence of lifestyle on airborne particle surface area doses received by different Western populations. Environmental Pollution, 2018, 232, 113-122.	7.5	23
319	Cystic fibrosis pathogens survive for extended periods within cough-generated droplet nuclei. Thorax, 2019, 74, 87-90.	5.6	23
320	Link between SARS-CoV-2 emissions and airborne concentrations: Closing the gap in understanding. Journal of Hazardous Materials, 2022, 428, 128279.	12.4	23
321	lons in motor vehicle exhaust and their dispersion near busy roads. Atmospheric Environment, 2010, 44, 3644-3650.	4.1	22
322	Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) in Brisbane, Queensland (Australia): Study Design and Implementation. International Journal of Environmental Research and Public Health, 2015, 12, 1687-1702.	2.6	22
323	Meta-analysis on short-term exposure to ambient ultrafine particles and respiratory morbidity. European Respiratory Review, 2020, 29, 200116.	7.1	22
324	Fungal spore fragmentation as a function of airflow rates and fungal generation methods. Atmospheric Environment, 2009, 43, 3725-3735.	4.1	21

#	Article	IF	CITATIONS
325	Endotoxins in Indoor Air and Settled Dust in Primary Schools in a Subtropical Climate. Environmental Science & Technology, 2013, 47, 9882-9890.	10.0	21
326	Ambient PM2.5 and PM10 Exposure and Respiratory Disease Hospitalization in Kandy, Sri Lanka. International Journal of Environmental Research and Public Health, 2021, 18, 9617.	2.6	21
327	Application of aerosol electrometer for ambient particle charge measurements. Atmospheric Environment, 2008, 42, 8827-8830.	4.1	20
328	Remote measurement of diesel locomotive emission factors and particle size distributions. Atmospheric Environment, 2013, 81, 148-157.	4.1	20
329	A Novel Method and Its Application to Measuring Pathogen Decay in Bioaerosols from Patients with Respiratory Disease. PLoS ONE, 2016, 11, e0158763.	2.5	20
330	Benefits of influenza vaccination on the associations between ambient air pollution and allergic respiratory diseases in children and adolescents: New insights from the Seven Northeastern Cities study in China. Environmental Pollution, 2020, 256, 113434.	7.5	20
331	Global Air Quality and COVID-19 Pandemic: Do We Breathe Cleaner Air?. Aerosol and Air Quality Research, 2021, 21, 200567.	2.1	20
332	Is greener better? Associations between greenness and birth outcomes in both urban and non-urban settings. International Journal of Epidemiology, 2022, 51, 88-98.	1.9	20
333	Air pollution control efficacy and health impacts: A global observational study from 2000 to 2016. Environmental Pollution, 2021, 287, 117211.	7.5	20
334	Risk of SARS oVâ€⊋ in a car cabin assessed through 3D CFD simulations. Indoor Air, 2022, 32, e13012.	4.3	20
335	Charged particles and cluster ions produced during cooking activities. Science of the Total Environment, 2014, 497-498, 516-526.	8.0	19
336	Do air quality targets really represent safe limits for lung cancer risk?. Science of the Total Environment, 2017, 580, 74-82.	8.0	19
337	The relationship between indoor and outdoor temperature in warm and cool seasons in houses in Brisbane, Australia. Energy and Buildings, 2019, 191, 127-142.	6.7	19
338	Sources and vertical distribution of PM2.5 over Shanghai during the winter of 2017. Science of the Total Environment, 2020, 706, 135683.	8.0	19
339	The impact of incense burning on indoor PM2.5 concentrations in residential houses in Hanoi, Vietnam. Building and Environment, 2021, 205, 108228.	6.9	19
340	Low Exhaled Breath Droplet Formation May Explain Why Children are Poor SARS-CoV-2 Transmitters. Aerosol and Air Quality Research, 2020, 20, 1513-1515.	2.1	19
341	Particle Number Emissions and Source Signatures of an Industrial Facility. Environmental Science & Technology, 2006, 40, 803-814.	10.0	18
342	Observation of ions and particles near busy roads using a neutral cluster and air ion spectrometer (NAIS). Atmospheric Environment, 2014, 84, 198-203.	4.1	18

#	Article	IF	CITATIONS
343	Seasonal variations of outdoor air pollution and factors driving them in the school environment in rural Bhutan. Atmospheric Environment, 2015, 113, 151-158.	4.1	18
344	Continuous effectiveness of replacing catalytic converters on liquified petroleum gas-fueled vehicles in Hong Kong. Science of the Total Environment, 2019, 648, 830-838.	8.0	18
345	New insights into the spatial distribution of particle number concentrations by applying non-parametric land use regression modelling. Science of the Total Environment, 2020, 702, 134708.	8.0	18
346	Urban environmental health interventions towards the Sustainable Development Goals. Science of the Total Environment, 2020, 748, 141530.	8.0	18
347	Environmental Tobacco Smoke Particles. , 0, , 245-274.		17
348	Development of a composite line source emission model for traffic interrupted microenvironments and its application in particle number emissions at a bus station. Atmospheric Environment, 2010, 44, 3269-3277.	4.1	17
349	Role of Vegetation in Enhancing Radon Concentration and Ion Production in the Atmosphere Environmental Science & Technology, 2011, 45, 6350-6355.	10.0	17
350	Sources of ultrafine particles and chemical species along a traffic corridor: comparison of the results from two receptor models. Environmental Chemistry, 2013, 10, 54.	1.5	17
351	Observations on the Formation, Growth and Chemical Composition of Aerosols in an Urban Environment. Environmental Science & Technology, 2014, 48, 6588-6596.	10.0	17
352	Ultrafine particles and children's health: Literature review. Paediatric Respiratory Reviews, 2019, 32, 73-81.	1.8	17
353	Deposition of ambient ultrafine particles in the respiratory tract of children: A novel experimental method and its application. Journal of Aerosol Science, 2020, 139, 105465.	3.8	17
354	Exploratory cross-sectional investigations on ambient submicrometer particles in Salzburg, Austria. Atmospheric Environment, 2004, 38, 3529-3533.	4.1	16
355	Influence of medium range transport of particles from nucleation burst on particle number concentration within the urban airshed. Atmospheric Chemistry and Physics, 2012, 12, 4951-4962.	4.9	16
356	NSAM-derived total surface area versus SMPS-derived "mobility equivalent―surface area for different environmentally relevant aerosols. Journal of Aerosol Science, 2013, 66, 1-11.	3.8	16
357	Investigation of the airborne submicrometer particles emitted by dredging vessels using a plume capture method. Atmospheric Environment, 2013, 73, 112-123.	4.1	16
358	Comparison of charged nanoparticle concentrations near busy roads and overhead high-voltage power lines. Science of the Total Environment, 2015, 526, 14-18.	8.0	16
359	A study on extending the use of air quality monitor data via deep learning techniques. Journal of Cleaner Production, 2020, 274, 122956.	9.3	16
360	Predicting the effect of confinement on the COVID-19 spread using machine learning enriched with satellite air pollution observations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16

#	Article	IF	CITATIONS
361	Investigations of a Specific Surface Area of a Material on the Basis of 222Rn Emanation Coefficient Measurements. Health Physics, 1989, 57, 23-27.	0.5	15
362	The relationship between airborne small ions and particles in urban environments. Atmospheric Environment, 2013, 79, 1-6.	4.1	15
363	First measurements of source apportionment of organic aerosols in the Southern Hemisphere. Environmental Pollution, 2014, 184, 81-88.	7.5	15
364	Characterization of VOCs from LPG and unleaded petroleum fuelled passenger cars. Fuel, 2014, 115, 636-643.	6.4	15
365	Effect of indoor-generated airborne particles on radon progeny dynamics. Journal of Hazardous Materials, 2016, 314, 155-163.	12.4	15
366	Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment. Journal of Arthroplasty, 2018, 33, 1524-1529.	3.1	15
367	Schoolchildren's personal exposure to ultrafine particles in and near Accra, Ghana. Environment International, 2019, 133, 105223.	10.0	15
368	The influence of wind speed on new particle formation events in an urban environment. Atmospheric Research, 2019, 215, 37-41.	4.1	15
369	Should industrial bagasse-fired boilers be phased out in China?. Journal of Cleaner Production, 2020, 265, 121716.	9.3	15
370	Effect of fuel composition and engine operating conditions on polycyclic aromatic hydrocarbon emissions from a fleet of heavy-duty diesel buses. Atmospheric Environment, 2005, , .	4.1	14
371	Size distribution and new particle formation in subtropical eastern Australia. Environmental Chemistry, 2008, 5, 382.	1.5	14
372	Corona ions from high-voltage power lines: Nature of emission and dispersion. Journal of Electrostatics, 2011, 69, 228-235.	1.9	14
373	Evaluating the risk of mixtures in the indoor air of primary school classrooms. Environmental Science and Pollution Research, 2015, 22, 15080-15088.	5.3	14
374	Temporal distribution and other characteristics of new particle formation events in an urban environment. Environmental Pollution, 2018, 233, 552-560.	7.5	14
375	Effects of temperature on hospitalisation among pre-school children in Hanoi, Vietnam. Environmental Science and Pollution Research, 2019, 26, 2603-2612.	5.3	14
376	Two decades of trends in urban particulate matter concentrations across Australia. Environmental Research, 2020, 190, 110021.	7.5	14
377	Ultrafine particle emission from floor cleaning products. Indoor Air, 2021, 31, 63-73.	4.3	14
378	Elemental Composition of Ambient Fine Particles in Urban Schools: Sources of Children's Exposure. Aerosol and Air Quality Research, 2014, 14, 1906-1916.	2.1	14

#	Article	IF	CITATIONS
379	A simple and inexpensive dilution system for the TSI 3007 condensation particle counter. Atmospheric Environment, 2007, 41, 4553-4557.	4.1	13
380	Biomass burning influenced particle characteristics in Northern Territory Australia based on airborne measurements. Atmospheric Research, 2010, 96, 103-109.	4.1	13
381	Atmospheric Visibility and PM10 as Indicators of New Particle Formation in an Urban Environment. Environmental Science & Technology, 2015, 49, 12751-12757.	10.0	13
382	Air quality during and after the Commonwealth Games 2018 in Australia: Multiple benefits of monitoring. Journal of Aerosol Science, 2021, 152, 105707.	3.8	13
383	Using a Network of Low-cost Particle Sensors to Assess the Impact of Ship Emissions on a Residential Community. Aerosol and Air Quality Research, 2020, 20, 2754-2764.	2.1	13
384	The use of carbon dioxide as a tracer in the determination of particle number emissions from heavy-duty diesel vehicles. Atmospheric Environment, 2005, 39, 6812-6821.	4.1	12
385	Aerosol mass spectrometric analysis of the chemical composition of non-refractory PM1 samples from school environments in Brisbane, Australia. Science of the Total Environment, 2013, 458-460, 81-89.	8.0	12
386	Excursion Guidance Criteria to Guide Control of Peak Emission and Exposure to Airborne Engineered Particles. Journal of Occupational and Environmental Hygiene, 2013, 10, 640-651.	1.0	12
387	Relating urban airborne particle concentrations to shipping using carbon based elemental emission ratios. Atmospheric Environment, 2014, 95, 525-536.	4.1	12
388	Exploratory assessment of indoor and outdoor particle number concentrations in Hanoi households. Science of the Total Environment, 2017, 599-600, 284-290.	8.0	12
389	Using Polyurethane Foam-Based Passive Air Sampling Technique to Monitor Monosaccharides at a Regional Scale. Environmental Science & Technology, 2018, 52, 12546-12555.	10.0	12
390	Characterization of particle size distributions during winter haze episodes in urban air. Atmospheric Research, 2019, 228, 55-67.	4.1	12
391	Motorcyclists have much higher exposure to black carbon compared to other commuters in traffic of Hanoi, Vietnam. Atmospheric Environment, 2021, 245, 118029.	4.1	12
392	Two ways of determining the 222Rn emanation coefficient. Health Physics, 1989, 57, 481-3.	0.5	12
393	Assessment of SARS-CoV-2 airborne infection transmission risk in public buses. Geoscience Frontiers, 2022, 13, 101398.	8.4	12
394	Particulate Matter in the Hospital Environment. Indoor Air, 1998, 8, 285-294.	4.3	11
395	Corona lons from Overhead Transmission Voltage Powerlines: Effect on Direct Current Electric Field and Ambient Particle Concentration Levels. Environmental Science & (amp; Technology, 2010, 44, 526-531.	10.0	11
396	Pollutant Concentrations within Households in Lao PDR and Association with Housing Characteristics and Occupants' Activities. Environmental Science & Technology, 2011, 45, 882-889.	10.0	11

LIDIA MORAWSKA

#	Article	IF	CITATIONS
397	Daily submicron particle doses received by populations living in different low- and middle-income countries. Environmental Pollution, 2021, 269, 116229.	7.5	11
398	Investigation of a modified Sinclair–La Mer aerosol generator in the submicrometer range. Journal of Aerosol Science, 1998, 29, 799-809.	3.8	10
399	Fundamentals of Indoor Particles and Settled Dust. , 0, , 1-46.		10
400	Impact of particle formation on atmospheric ions and particle number concentrations in an urban environment. Atmospheric Research, 2015, 157, 127-136.	4.1	10
401	Factors influencing the outdoor concentration of carbonaceous aerosols at urban schools in Brisbane, Australia: Implications for children's exposure. Environmental Pollution, 2016, 208, 249-255.	7.5	10
402	Airborne ultrafine particles in a Pacific Island country: Characteristics, sources and implications for human exposure. Environmental Pollution, 2017, 231, 367-378.	7.5	10
403	Differentiating between particle formation and growth events in an urban environment. Atmospheric Chemistry and Physics, 2018, 18, 11171-11183.	4.9	10
404	The effect of cold-start emissions on the diurnal variation of carbon monoxide concentration in a city centre. Atmospheric Environment, 2021, 245, 118035.	4.1	10
405	The vaccination threshold for SARS-CoV-2 depends on the indoor setting and room ventilation. BMC Infectious Diseases, 2021, 21, 1193.	2.9	10
406	Rapid Identification of High Particle Number Emitting On-Road Vehicles and Its Application to a Large Fleet of Diesel Buses. Environmental Science & Technology, 2007, 41, 5022-5027.	10.0	9
407	Analysis of organic aerosols collected on filters by Aerosol Mass Spectrometry for source identification. Analytica Chimica Acta, 2013, 803, 91-96.	5.4	9
408	A mechanism for the production of ultrafine particles from concrete fracture. Environmental Pollution, 2017, 222, 175-181.	7.5	9
409	Improved morbidity-based air quality health index development using Bayesian multi-pollutant weighted model. Environmental Research, 2022, 204, 112397.	7.5	9
410	Influence of indoor airflow on particle spread of a single breath and cough in enclosures: Does opening a window really †help'?. Atmospheric Pollution Research, 2022, 13, 101473.	3.8	9
411	Reference Values of Environmental Pollutants in House Dust. , 0, , 407-435.		8
412	Monitoring charged particle and ion emissions from a laser printer. Journal of Electrostatics, 2012, 70, 333-338.	1.9	8
413	Charging State of Aerosols during Particle Formation Events in an Urban Environment and Its Implications for Ion-Induced Nucleation. Aerosol and Air Quality Research, 2016, 16, 348-360.	2.1	8
414	Particle Emissions from Laser Printers: Have They Decreased?. Environmental Science and Technology Letters, 2019, 6, 300-305.	8.7	8

#	Article	IF	CITATIONS
415	Variation of indoor minimum mortality temperature in different cities: Evidence of local adaptations. Environmental Pollution, 2019, 246, 745-752.	7.5	8
416	The role of influenza vaccination in mitigating the adverse impact of ambient air pollution on lung function in children: New insights from the Seven Northeastern Cities Study in China. Environmental Research, 2020, 187, 109624.	7.5	8
417	Ultrafine particles, blood pressure and adult hypertension: a population-based survey in Northeast China. Environmental Research Letters, 2021, 16, 094041.	5.2	8
418	Attachment of Radon Progeny to Cigarette Smoke Aerosol. Aerosol Science and Technology, 1992, 17, 149-158.	3.1	7
419	Performance assessment of electrostatic filters with a focus on submicrometer particles. Journal of Aerosol Science, 1998, 29, S1129-S1130.	3.8	7
420	Exploratory assessment of outdoor and indoor airborne black carbon in different locations of Hanoi, Vietnam. Science of the Total Environment, 2018, 642, 1233-1241.	8.0	7
421	Seasonal temperature patterns and durations of acceptable temperature range in houses in Brisbane, Australia. Science of the Total Environment, 2019, 683, 470-479.	8.0	7
422	Impact of Filtration Conditions on Air Quality in an Operating Room. International Journal of Environmental Research, 2020, 14, 685-692.	2.3	7
423	Monitoring the levels of brominated and organophosphate flame retardants in passenger cars: Utilisation of car air filters as active samplers. Journal of Environmental Sciences, 2020, 91, 142-150.	6.1	7
424	A comparison of anesthetic protective barriers for the management of COVIDâ€19 pediatric patients. Paediatric Anaesthesia, 2021, 31, 323-329.	1.1	7
425	Energy transitions, air quality and health. Environmental Research Letters, 2021, 16, 020202.	5.2	7
426	Evaluating the Theoretical Background of STOFFENMANAGER® and the Advanced REACH Tool. Annals of Work Exposures and Health, 2022, 66, 520-536.	1.4	7
427	Indoor Chemistry as a Source of Particles. , 0, , 167-189.		6
428	Characterization of the atmospheric electrical environment near a corona ion-emitting source. Atmospheric Environment, 2008, 42, 1607-1616.	4.1	6
429	Experimental and Numerical Analysis of the Relationship Between Indoor and Outdoor Airborne Particles in an Operating Room. Indoor and Built Environment, 2013, 22, 864-875.	2.8	6
430	Insights into the growth of newly formed particles in a subtropical urban environment. Atmospheric Chemistry and Physics, 2015, 15, 13475-13485.	4.9	6
431	Mobile assessment of on-road air pollution and its sources along the East–West Highway in Bhutan. Atmospheric Environment, 2015, 118, 98-106.	4.1	6
432	Towards Urbanome the genome of the city to enhance the form and function of future cities. Nature Communications, 2019, 10, 4014.	12.8	6

#	Article	IF	CITATIONS
433	Transmission of bacteria in bronchiectasis and chronic obstructive pulmonary disease: Low burden of cough aerosols. Respirology, 2019, 24, 980-987.	2.3	6
434	Experimentally determined deposition of ambient urban ultrafine particles in the respiratory tract of children. Environment International, 2020, 145, 106094.	10.0	6
435	Evidence Review and Practice Recommendation on the Material, Design, and Maintenance of Cloth Masks. Disaster Medicine and Public Health Preparedness, 2020, 14, e42-e46.	1.3	6
436	Reply to Chagla et al., and Thomas. Clinical Infectious Diseases, 2020, 73, e3983-e3984.	5.8	6
437	Suppression of Cluster Ions during Rapidly Increasing Particle Number Concentration Events in the Environment. Aerosol and Air Quality Research, 2015, 15, 28-37.	2.1	6
438	Evaluating the applicability of the ratio of PM2.5 and carbon monoxide as source signatures. Environmental Pollution, 2022, 306, 119278.	7.5	6
439	Radon concentration and exhalation measurement with a semiconductor detector and an electrostatic precipitator working in a closed circulation system. Nuclear Instruments & Methods in Physics Research, 1983, 212, 393-402.	0.9	5
440	Determination of the radon surface emanation rate from laboratory emanation data. Science of the Total Environment, 1991, 106, 253-262.	8.0	5
441	Particulate emissions from a petrol to CNG converted spark ignition vehicle. Journal of Aerosol Science, 2000, 31, 624-625.	3.8	5
442	Measurement of Airborne Particles. , 0, , 56-81.		5
443	Size-resolved particle distribution and gaseous concentrations by real-world road tunnel measurement. Indoor and Built Environment, 2014, 23, 225-235.	2.8	5
444	Application of multi-metric approach to characterization of particle emissions from nanotechnology and non-nanotechnology processes. Journal of Occupational and Environmental Hygiene, 2016, 13, D175-D197.	1.0	5
445	A Bayesian spatiotemporal model of panel design data: Airborne particle number concentration in Brisbane, Australia. Environmetrics, 2019, 30, e2597.	1.4	5
446	Impact of COVID-19 lockdown on air quality of Sri Lankan cities. International Journal of Environmental Pollution and Remediation, 0, , 12-21.	0.0	5
447	Where Is the Clean Air? A Bayesian Decision Framework for Personalised Cyclist Route Selection Using R-INLA. Bayesian Analysis, 2021, 16, .	3.0	5
448	Air Quality in the Sydney Metropolitan Region during the 2013 Blue Mountains Wildfire. Aerosol and Air Quality Research, 2018, 18, 2420-2432.	2.1	5
449	Determination of the Activity Size Distribution of Radon Progeny. Aerosol Science and Technology, 1997, 26, 459-468.	3.1	4
450	New Directions: Particle air pollution down under. Atmospheric Environment, 2001, 35, 1711-1712.	4.1	4

#	Article	IF	CITATIONS
451	Modelling of sub-micrometer particle concentrations in free-flowing freeway traffic, Brisbane, Australia: some empirical results. Transportation Research, Part D: Transport and Environment, 2003, 8, 229-241.	6.8	4
452	Motor Vehicle Emissions as a Source of Indoor Particles. , 0, , 297-318.		4
453	Health Effects of Airborne Dust and Particulate Matter Indoors: A Review of Three Climate Chamber Studies. , 0, , 387-406.		4
454	Temporal evolution of charged and neutral nanoparticle concentrations during atmospheric new particle formation events and its implications for ion-induced nucleation. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	6.0	4
455	Preface on air quality in China. Science of the Total Environment, 2017, 603-604, 26.	8.0	4
456	Capacity of quartz fibers with high filtration efficiency for capturing soot aerosol particles. International Journal of Environmental Science and Technology, 2018, 15, 1039-1048.	3.5	4
457	Secondhand smoke in public places in Vietnam: An assessment 5 years after implementation of the tobacco control law. Tobacco Control, 2021, 30, 553-559.	3.2	4
458	How to choose healthier urban biking routes: CO as a proxy of traffic pollution. Heliyon, 2020, 6, e04195.	3.2	4
459	Influence of methodology on the estimation of the particle surface area dose received by a population in all-day activities. Environmental Pollution, 2020, 266, 115209.	7.5	4
460	Airway Hygiene in Children and Adults for Lowering Respiratory Droplet Exposure in Clean and Dirty Air. Molecular Frontiers Journal, 2020, 04, 46-57.	1.1	4
461	Investigation of the Source of Blank Problems in the Measurement of Lead in Sub-micrometre Airborne Particulates by Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 1997, 12, 553-556.	3.0	3
462	Emission of submicrometer particles from spark ignition vehicles. Journal of Aerosol Science, 1998, 29, S1001-S1002.	3.8	3
463	Development of a methodology for the quantification of particle number and gaseous concentrations in a bidirectional bus tunnel and the derivation of emission factors. Atmospheric Environment, 2008, 42, 8353-8357.	4.1	3
464	Identification of the sources of primary organic aerosols at urban schools: A molecular marker approach. Environmental Pollution, 2014, 191, 158-165.	7.5	3
465	Unexpected increase in indoor pollutants after the introduction of a smoke-free policy in a correctional center. Indoor Air, 2016, 26, 623-633.	4.3	3
466	The Relationship between Social Development and Ambient Particulate Matter Pollution: Can We Predict The Turning Points?. Environmental Management, 2020, 66, 278-287.	2.7	3
467	Mixing state of printer generated ultrafine particles: Implications for the complexity of indoor aerosols. Atmospheric Environment, 2021, 259, 118550.	4.1	3
468	Prevention of SARS-CoV-2 (COVID-19) transmission in residential aged care using ultraviolet light (PETRA): a two-arm crossover randomised controlled trial protocol. BMC Infectious Diseases, 2021, 21, 967.	2.9	3

LIDIA MORAWSKA

#	Article	IF	CITATIONS
469	Are There Generalizable Trends in the Release of Airborne Synthetic Clay Nanoparticles from a Jet Milling Process?. Aerosol and Air Quality Research, 2015, 15, 365-375.	2.1	3
470	WHO Health Guidelines for Indoor Air Quality and National Recommendations/Standards. , 2022, , 1-20.		3
471	Ultrafine particle exposure and biomarkers of effect on small airways in children. Environmental Research, 2022, 214, 113860.	7.5	3
472	Sampling of Surface Dust in Buildings. , 0, , 82-104.		2
473	Analysis of Chemical and Biological Properties. , 0, , 105-140.		2
474	Organic Compounds Adsorbed on Particles and Settled House Dust. , 0, , 141-166.		2
475	Particle Concentration Levels and Size Distribution Characteristics in Residential and Non-Industrial Workplace Environments. , 0, , 190-224.		2
476	The Phenomenon of"Black Magic Dust―in Housing Units. , 0, , 340-355.		2
477	Indoor Particles, Combustion Products and Fibres. Handbook of Environmental Chemistry, 2014, , 37-68.	0.4	2
478	Determination of the association between indoor and outdoor temperature in selected houses and its application: a pilot study. Advances in Building Energy Research, 2019, , 1-35.	2.3	2
479	Experimental determination of the dispersion of ions from a point source in the environment. Environmental Technology (United Kingdom), 2019, 40, 1213-1222.	2.2	2
480	How to build Urbanome, the genome of the city?. Science of the Total Environment, 2022, 810, 152310.	8.0	2
481	Assessment of Exposure to Airborne Particles. , 0, , 357-386.		1
482	Application of bag sampling technique for particle size distribution measurements. Journal of Environmental Monitoring, 2009, 11, 2087.	2.1	1
483	New Directions: Shall we peel an orange?. Atmospheric Environment, 2010, 44, 2260-2261.	4.1	1
484	Forecasting Urban Air Quality. Advances in Meteorology, 2012, 2012, 1-2.	1.6	1
485	Large-Scale Spraying of Roads with Water Contributes to, Rather Than Prevents, Air Pollution. Toxics, 2021, 9, 122.	3.7	1
486	Regulations and Policy Measures Related to the Reduction of Ambient Particulate Matter. Environmental Science and Engineering, 2010, , 599-622.	0.2	1

#	Article	IF	CITATIONS
487	Distribution of Radium in Mineral Sand Grains and its Potential Effect on Radon Emanation. Radiation Protection Dosimetry, 1994, 56, 199-200.	0.8	1
488	Estimation of inhaled ultrafine particle surface area dose for urban environments. ANZIAM Journal, 0, 55, 437.	0.0	1
489	What are the Driving Factors Influencing the Size Distribution of Airborne Synthetic Clay Particles Emitted from a Jet Milling Process?. Aerosol and Air Quality Research, 2017, 16, 25-35.	2.1	1
490	Hygroscopic and Volatile Properties of Ultrafine Particles in the Eucalypt Forests: Comparison with Chamber Experiments and the Role of Sulphates in New Particle Formation. , 2007, , 689-693.		1
491	Editorial. Indoor Air, 1999, 9, 71-74.	4.3	0
492	Modelling of Particle Concentration from Motor Vehicles in Urban Environments. , 2002, , 25.		0
493	Chapter 19 New directions: Particle air pollution down under. Developments in Environmental Science, 2002, , 565-568.	0.5	0
494	Introduction to Sampling and Measurement Techniques. , 0, , 47-55.		0
495	Asbestos and Mineral Fibers. , 0, , 225-244.		0
496	The Effect of Filtration in Heating, Ventilation, and Air-Conditioning Systems. , 0, , 275-296.		0
497	Modeling of Indoor Particle Concentration. , 0, , 319-339.		0
498	Ambient air particulate matter: A cause of airway and systemic disease. Toxicology Letters, 2009, 189, S35.	0.8	0
499	Ultrafine Particle Exposure During Transit. Epidemiology, 2011, 22, S188-S189.	2.7	0
500	Occupational Release of Engineered Nanoparticles: A Review. Handbook of Environmental Chemistry, 2015, , 73-91.	0.4	0
501	P174 High aerosol production of potentially infectious cough aerosols in people with cystic fibrosis during coughing. Journal of Cystic Fibrosis, 2019, 18, S106-S107.	0.7	0
502	Ultrafine particles in key microenvironments in rural and urban areas of Ghana. Atmospheric Pollution Research, 2021, 12, 101212.	3.8	0
503	Atmospheric Aerosol and Ion Characteristics during EUCAP (Eucalypt Forest Aerosols and) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf 50
504	UFP exposure and biomarkers of exposure/effect on small airways in school children. ISEE Conference	0.0	0

Abstracts, 2020, 2020, .

0.0 0