
Seung-Hyun Hur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2677447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Designing an intriguingly fluorescent N, B-doped carbon dots based fluorescent probe for selective detection of NO2â'' ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 268, 120657.	3.9	10
2	Enhanced Electromagnetic Interference Shielding Properties of Immiscible Polyblends with Selective Localization of Reduced Graphene Oxide Networks. Polymers, 2022, 14, 967.	4.5	6
3	Developments and Perspectives on Robust Nano―and Microstructured Binderâ€Free Electrodes for Bifunctional Water Electrolysis and Beyond. Advanced Energy Materials, 2022, 12, .	19.5	63
4	Improved kinetics of reduction of alkaline water on the <scp>gâ€CNâ€</scp> supported transition metal oxide/boride heteroâ€interface: A case study. International Journal of Energy Research, 2022, 46, 14979-14993.	4.5	3
5	Carbide-directed enhancement of electrochemical hydrogen evolution reaction on tungsten carbide–oxide heterostructure. Chemical Engineering Journal, 2022, 450, 137915.	12.7	12
6	Simple paper-based colorimetric and fluorescent glucose sensor using N-doped carbon dots and metal oxide hybrid structures. Analytica Chimica Acta, 2021, 1147, 187-198.	5.4	43
7	Glutathione modified N-doped carbon dots for sensitive and selective dopamine detection. Dyes and Pigments, 2021, 186, 109028.	3.7	40
8	Concentration-dependent emission of nitrogen-doped carbon dots and its use in hazardous metal-ion detection. Carbon Letters, 2021, 31, 523-536.	5.9	9
9	Construction and Mechanism Analysis of a Self-Assembled Conductive Network in DGEBA/PEI/HRGO Nanocomposites by Controlling Filler Selective Localization. Nanomaterials, 2021, 11, 228.	4.1	5
10	Highly CO Selective Trimetallic Metal-Organic Framework Electrocatalyst for the Electrochemical Reduction of CO2. Catalysts, 2021, 11, 537.	3.5	8
11	Highly CO selective Ca and Zn hybrid metal-organic framework electrocatalyst for the electrochemical reduction of CO2. Current Applied Physics, 2021, 27, 31-37.	2.4	11
12	High quantum yield aminophenylboronic acid-functionalized N-doped carbon dots for highly selective hypochlorite ion detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119895.	3.9	14
13	Fabrication of dual emission carbon dots and its use in highly sensitive thioamide detection. Dyes and Pigments, 2020, 175, 108126.	3.7	10
14	Multi-functional NiO/g-C3N4 hybrid nanostructures for energy storage and sensor applications. Korean Journal of Chemical Engineering, 2020, 37, 1589-1598.	2.7	15
15	Fabrication of g-C3N4 Quantum Dots/MnCO3 Nanocomposite on Carbon Cloth for Flexible Supercapacitor Electrode. Applied Sciences (Switzerland), 2020, 10, 7927.	2.5	15
16	Highly sensitive smartphone-integrated colorimetric glucose sensor based on MnFe2O4 – graphitic carbon nitride hybrid nanostructure. Materials Research Bulletin, 2020, 129, 110910.	5.2	18
17	Uncovering the actual inner-filter effect between highly efficient carbon dots and nitroaromatics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118342.	3.9	14
18	Cerium-Oxide-Nanoparticle-Decorated Zinc Oxide with Enhanced Photocatalytic Degradation of Methyl Orange. Applied Sciences (Switzerland), 2020, 10, 1697.	2.5	42

#	Article	IF	CITATIONS
19	Multicolor Emitting N-Doped Carbon Dots Derived from Ascorbic Acid and Phenylenediamine Precursors. Nanoscale Research Letters, 2020, 15, 222.	5.7	15
20	The effect of solvent polarity on emission properties of carbon dots and their uses in colorimetric sensors for water and humidity. Materials Research Bulletin, 2019, 119, 110564.	5.2	60
21	Graphene Composites for Lead Ions Removal from Aqueous Solutions. Applied Sciences (Switzerland), 2019, 9, 2925.	2.5	28
22	Nitrogen and boron-incorporated carbon dots for the sequential sensing of ferric ions and ascorbic acid sensitively and selectively. Dyes and Pigments, 2019, 171, 107752.	3.7	23
23	Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing and cell-imaging. Analytica Chimica Acta, 2019, 1079, 212-219.	5.4	81
24	ZnO-Associated Carbon Dot-Based Fluorescent Assay for Sensitive and Selective Dopamine Detection. ACS Omega, 2019, 4, 17031-17038.	3.5	35
25	Effect of GO Additive in ZnO/rGO Nanocomposites with Enhanced Photosensitivity and Photocatalytic Activity. Nanomaterials, 2019, 9, 1441.	4.1	62
26	Mesoporous ruthenium metal organic framework core shell templated CdS/rGO nanosheets catalyst for efficient bifunctional electro-catalytic oxygen reactions. Materials Research Bulletin, 2019, 112, 95-103.	5.2	19
27	Tailoring the structural properties of simultaneously reduced and functionalized graphene oxide via alkanolamine(s)/alkyl alkanolamine for energy storage applications. Chemical Engineering Journal, 2019, 363, 120-132.	12.7	30
28	Novel Graphene Hydrogel/Bâ€Doped Graphene Quantum Dots Composites as Trifunctional Electrocatalysts for Znâ°'Air Batteries and Overall Water Splitting. Advanced Energy Materials, 2019, 9, 1900945.	19.5	150
29	Reshaping of triangular silver nanoplates by a non-halide etchant and its application in melamine sensing. Journal of Colloid and Interface Science, 2019, 552, 485-493.	9.4	23
30	Aminoboronic acid-functionalized graphitic carbon nitride quantum dots for the photoluminescence multi-chemical sensing probe. Dyes and Pigments, 2019, 168, 180-188.	3.7	33
31	Engineered "coffee-rings―of reduced graphene oxide as ultrathin contact guidance to enable patterning of living cells. Materials Horizons, 2019, 6, 1066-1079.	12.2	35
32	Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Applied Surface Science, 2019, 464, 170-177.	6.1	189
33	Highly biocompatible phenylboronic acid-functionalized graphitic carbon nitride quantum dots for the selective glucose sensor. Sensors and Actuators B: Chemical, 2019, 282, 36-44.	7.8	65
34	Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices. Physics Reports, 2019, 792, 1-33.	25.6	111
35	Metal nanocrystal-based sensing platform for the quantification of water in water-ethanol mixtures. Sensors and Actuators B: Chemical, 2018, 263, 59-68.	7.8	27
36	Facile synthesis and structural analysis of graphene oxide decorated with iron-cerium carbonate for visible-light driven rapid degradation of organic dyes. Journal of Environmental Chemical Engineering, 2018, 6, 2616-2626.	6.7	9

#	Article	IF	CITATIONS
37	Heterophase polymer dispersion: A green approach to the synthesis of functional hollow polymer microparticles. Chemical Engineering Journal, 2018, 348, 46-56.	12.7	31
38	One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution. Sensors and Actuators B: Chemical, 2018, 255, 3284-3291.	7.8	142
39	Surface modification of co-doped reduced graphene oxide through alkanolamine functionalization for enhanced electrochemical performance. New Journal of Chemistry, 2018, 42, 1105-1114.	2.8	14
40	Chemically controlled in-situ growth of cobalt oxide microspheres on N,S-co-doped reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2018, 407, 70-83.	7.8	36
41	Pt Nanoparticle-Decorated Reduced Graphene Oxide Hydrogel for High-Performance Strain Sensor: Tailoring Piezoresistive Property by Controlled Microstructure of Hydrogel. ACS Applied Nano Materials, 2018, 1, 2836-2843.	5.0	17
42	Anion-controlled sulfidation for decoration of graphene oxide with iron cobalt sulfide for rapid sonochemical dyes removal in the absence of light. Applied Catalysis A: General, 2018, 561, 49-58.	4.3	12
43	Green synthesis of silver nanoparticle-decorated porous reduced graphene oxide for antibacterial non-enzymatic glucose sensors. Ionics, 2017, 23, 1525-1532.	2.4	31
44	Polyol-mediated synthesis of ZnO nanoparticle-assembled hollow spheres/nanorods and their photoanode performances. Korean Journal of Chemical Engineering, 2017, 34, 495-499.	2.7	8
45	Multi-dimensional carbon nanofibers for supercapacitor electrodes. Journal of Electroceramics, 2017, 38, 43-50.	2.0	13
46	Highly enhanced visible light water splitting of CdS by green to blue upconversion. Dalton Transactions, 2017, 46, 13912-13919.	3.3	36
47	Photo-Enhanced Selective Reduction of Nitroarenes Over Pt/ZnO Catalyst. Catalysis Letters, 2017, 147, 2440-2447.	2.6	10
48	Single precursor mediated one-step synthesis of ternary-doped and functionalized reduced graphene oxide by pH tuning for energy storage applications. Chemical Engineering Journal, 2017, 330, 965-978.	12.7	28
49	NiMn ₂ O ₄ spinel binary nanostructure decorated on three-dimensional reduced graphene oxide hydrogel for bifunctional materials in non-enzymatic glucose sensor. Nanoscale, 2017, 9, 19318-19327.	5.6	48
50	Structurally tuned lead magnesium titanate perovskite as a photoelectrode material for enhanced photoelectrochemical water splitting. Chemical Engineering Journal, 2017, 309, 682-690.	12.7	33
51	Enhanced Capacitance of Three Dimensional Graphene Oxide Hydrogel by the Hybridization with Silver Nanowire. Journal of Nanoscience and Nanotechnology, 2017, 17, 7711-7713.	0.9	3
52	Three-Dimensional Porous Nitrogen-Doped NiO Nanostructures as Highly Sensitive NO2 Sensors. Nanomaterials, 2017, 7, 313.	4.1	20
53	High performance bifunctional electrocatalytic activity of a reduced graphene oxide–molybdenum oxide hybrid catalyst. Journal of Materials Chemistry A, 2016, 4, 13271-13279.	10.3	62
54	Effect of reduced graphene oxide functionalization by sulfanilic acid on the mechanical properties of poly(styreneâ€ <i>co</i> â€acrylonitrile)/reduced graphene oxide composites. Polymer Composites, 2016, 37, 44-50.	4.6	6

#	Article	IF	CITATIONS
55	A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis. Sensors and Actuators B: Chemical, 2016, 223, 76-82.	7.8	145
56	Advanced Nano-Structured Materials for Photocatalytic Water Splitting. Journal of Electrochemical Science and Technology, 2016, 7, 1-12.	2.2	17
57	Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting. RSC Advances, 2015, 5, 29159-29166.	3.6	82
58	Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode. Nanoscale Research Letters, 2015, 10, 183.	5.7	57
59	Direct Printing of Reduced Graphene Oxide on Planar or Highly Curved Surfaces with High Resolutions Using Electrohydrodynamics. Small, 2015, 11, 2263-2268.	10.0	90
60	Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel. Sensors and Actuators B: Chemical, 2015, 210, 618-623.	7.8	143
61	Preparation of a reduced graphene oxide hydrogel by Ni ions and its use in a supercapacitor electrode. RSC Advances, 2015, 5, 22753-22758.	3.6	14
62	Gold artichokes for enhanced photocatalysis. Materials Letters, 2015, 160, 92-95.	2.6	14
63	Fast and effective electron transport in a Au–graphene–ZnO hybrid for enhanced photocurrent and photocatalysis. RSC Advances, 2015, 5, 63964-63969.	3.6	44
64	Synthesis of highly durable sulfur doped graphite nanoplatelet electrocatalyst by a fast and simple wet ball milling process. Materials Letters, 2015, 161, 399-403.	2.6	13
65	Fabrication of 3D structured ZnO nanorod/reduced graphene oxide hydrogels and their use for photo-enhanced organic dye removal. Journal of Colloid and Interface Science, 2015, 437, 181-186.	9.4	61
66	Fabrication of Novel 2D NiO Nanosheet Branched on 1D-ZnO Nanorod Arrays for Gas Sensor Application. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	11
67	Dispersibility of reduced alkylamine-functionalized graphene oxides in organic solvents. Journal of Colloid and Interface Science, 2014, 424, 62-66.	9.4	55
68	Mechanical properties of graphite/aluminum metal matrix composite joints by friction stir spot welding. Journal of Mechanical Science and Technology, 2014, 28, 499-504.	1.5	21
69	Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. Journal of Colloid and Interface Science, 2014, 418, 37-42.	9.4	76
70	Controlled atom transfer radical polymerization of MMA onto the surface of high-density functionalized graphene oxide. Nanoscale Research Letters, 2014, 9, 345.	5.7	17
71	Effects of the alkylamine functionalization of graphene oxide on the properties of polystyrene nanocomposites. Nanoscale Research Letters, 2014, 9, 265.	5.7	29
72	Highly Efficient Lightâ€Emitting Diode of Graphene Quantum Dots Fabricated from Graphite Intercalation Compounds. Advanced Optical Materials, 2014, 2, 1016-1023.	7.3	229

#	Article	IF	CITATIONS
73	Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. International Journal of Precision Engineering and Manufacturing, 2014, 15, 1235-1239.	2.2	178
74	A catalytic and efficient route for reduction of graphene oxide by hydrogen spillover. Journal of Materials Chemistry A, 2013, 1, 1070-1077.	10.3	44
75	Ordered mesoporous carbon–carbon nanotube nanocomposites as highly conductive and durable cathode catalyst supports for polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2013, 1, 1270-1283.	10.3	58
76	Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. Journal of Materials Chemistry A, 2013, 1, 208-211.	10.3	217
77	Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors. Sensors and Actuators B: Chemical, 2013, 185, 701-705.	7.8	139
78	A one pot solution blending method for highly conductive poly (methyl methacrylate)-highly reduced graphene nanocomposites. Electronic Materials Letters, 2013, 9, 837-839.	2.2	17
79	Graphene and its application in fuel cell catalysis: a review. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 218-233.	1.5	71
80	Highly sensitive <scp>NO</scp> ₂ sensors based on local p–n heterojunctions composed of O <scp>D</scp> Cu <scp>O</scp> nanoparticles and 1 <scp>D</scp> Zn <scp>O</scp> nanorods. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1213-1216.	1.8	19
81	Polyol-Free Synthesis of Uniformly Dispersed Pt/Graphene Oxide Electrocatalyst by Sulfuric Acid Treatment. Journal of Nanomaterials, 2012, 2012, 1-6.	2.7	Ο
82	Novel conductive epoxy composites composed of 2-D chemically reduced graphene and 1-D silver nanowire hybrid fillers. Journal of Materials Chemistry, 2012, 22, 8649.	6.7	92
83	TiCl4 hybridization with modified Ni(II) α-diimine catalyst complex for ethylene polymerization. Korean Journal of Chemical Engineering, 2012, 29, 1119-1122.	2.7	1
84	Oneâ€step synthesis of a highly conductive graphene–polypyrrole nanofiber composite using a redox reaction and its use in gas sensors. Physica Status Solidi - Rapid Research Letters, 2012, 6, 379-381.	2.4	27
85	Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen. Journal of Materials Chemistry, 2012, 22, 10530.	6.7	211
86	Synthesis of highly concentrated suspension of chemically converted graphene in organic solvents: Effect of temperature on the extent of reduction and dispersibility. Korean Journal of Chemical Engineering, 2012, 29, 680-685.	2.7	30
87	Temperature-dependent photoluminescence from chemically and thermally reduced graphene oxide. Applied Physics Letters, 2011, 99, .	3.3	43
88	Low-voltage solution-processed graphene transistors based on chemically and solvothermally reduced graphene oxide. Journal of Materials Chemistry, 2011, 21, 13068.	6.7	25
89	Superior conductive polystyrene – chemically converted graphene nanocomposite. Journal of Materials Chemistry, 2011, 21, 11312.	6.7	87
90	Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. Journal of Materials Chemistry, 2011, 21, 3371-3377.	6.7	357

#	Article	IF	CITATIONS
91	The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 2011, 170, 226-232.	12.7	393
92	Influence of heat treatment on thermally-reduced graphene oxide/TiO2 composites for photocatalytic applications. Korean Journal of Chemical Engineering, 2011, 28, 2236-2241.	2.7	22
93	Solutionâ€processed semitransparent p–n graphene oxide:CNT/ZnO heterojunction diodes for visibleâ€blind UV sensors. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 943-946.	1.8	21
94	Optimization of single-walled carbon nanotube growth and study of the hysteresis of random network carbon nanotube thin film transistors. Korean Journal of Chemical Engineering, 2010, 27, 1892-1896.	2.7	2
95	Tunable visible emission and warm white photoluminescence of lithium-doped zinc oxide thin films. Journal of Materials Science, 2010, 45, 4111-4114.	3.7	7
96	One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chemical Communications, 2010, 46, 4375.	4.1	162