Shuigang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2676891/publications.pdf Version: 2024-02-01

SHUICANC XII

#	Article	IF	CITATIONS
1	High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nature Communications, 2015, 6, 7315.	12.8	423
2	Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus. Nano Letters, 2016, 16, 7768-7773.	9.1	242
3	Resonant terahertz detection using graphene plasmons. Nature Communications, 2018, 9, 5392.	12.8	198
4	Measuring Hall viscosity of graphene's electron fluid. Science, 2019, 364, 162-165.	12.6	197
5	Oxygenâ€Assisted Charge Transfer Between ZnO Quantum Dots and Graphene. Small, 2013, 9, 3031-3036.	10.0	174
6	Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnology, 2022, 17, 390-395.	31.5	115
7	Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nature Physics, 2021, 17, 619-626.	16.7	103
8	Isolation and Characterization of Few-Layer Manganese Thiophosphite. ACS Nano, 2017, 11, 11330-11336.	14.6	98
9	Micromagnetometry of two-dimensional ferromagnets. Nature Electronics, 2019, 2, 457-463.	26.0	93
10	Even–odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides. Nature Communications, 2016, 7, 12955.	12.8	82
11	Electronic phase separation in multilayer rhombohedral graphite. Nature, 2020, 584, 210-214.	27.8	81
12	Layer-engineered large-area exfoliation of graphene. Science Advances, 2020, 6, .	10.3	81
13	Intrinsic valley Hall transport in atomically thin MoS2. Nature Communications, 2019, 10, 611.	12.8	77
14	Composite super-moiré lattices in double-aligned graphene heterostructures. Science Advances, 2019, 5, eaay8897.	10.3	74
15	Piezotronic Effects on the Optical Properties of ZnO Nanowires. Nano Letters, 2012, 12, 5802-5807.	9.1	73
16	In situ manipulation of van der Waals heterostructures for twistronics. Science Advances, 2020, 6, .	10.3	69
17	Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene. Nature Communications, 2019, 10, 4008.	12.8	67
18	van der Waals Epitaxial Growth of Atomically Thin Bi ₂ Se ₃ and Thickness-Dependent Topological Phase Transition. Nano Letters, 2015, 15, 2645-2651.	9.1	54

Shuigang Xu

#	Article	IF	CITATIONS
19	Stacking Order in Graphite Films Controlled by van der Waals Technology. Nano Letters, 2019, 19, 8526-8532.	9.1	54
20	Graphene Thermal Emitter with Enhanced Joule Heating and Localized Light Emission in Air. ACS Photonics, 2019, 6, 2117-2125.	6.6	53
21	Tunnel field-effect transistors for sensitive terahertz detection. Nature Communications, 2021, 12, 543.	12.8	52
22	Control of electron-electron interaction in graphene by proximity screening. Nature Communications, 2020, 11, 2339.	12.8	46
23	Determining Interaction Enhanced Valley Susceptibility in Spin-Valley-Locked MoS ₂ . Nano Letters, 2019, 19, 1736-1742.	9.1	35
24	Out-of-equilibrium criticalities in graphene superlattices. Science, 2022, 375, 430-433.	12.6	34
25	Directly Metering Light Absorption and Heat Transfer in Single Nanowires Using Metal–Insulator Transition in VO ₂ . Advanced Optical Materials, 2015, 3, 336-341.	7.3	21
26	Minibands in twisted bilayer graphene probed by magnetic focusing. Science Advances, 2020, 6, eaay7838.	10.3	21
27	A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment. Nanoscale, 2016, 8, 2594-2600.	5.6	20
28	Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma. Applied Physics Letters, 2011, 99,	3.3	16
29	Hierarchical ZnO Nanostructures with Blooming Flowers Driven by Screw Dislocations. Scientific Reports, 2015, 5, 8226.	3.3	14
30	Tuning the optical and electrical properties of hydrothermally grown ZnO nanowires by sealed post annealing treatment. Solid State Communications, 2013, 160, 41-46.	1.9	12
31	Luminescence enhancement of ZnO-core/a-SiN_x:H-shell nanorod arrays. Optics Express, 2013, 21, 5891.	3.4	5
32	Annealing temperature effects on ferromagnetism and structure of Si1â^'xMnx films prepared by magnetron sputtering. Vacuum, 2012, 86, 1358-1362.	3.5	4
33	Charge density wave phase transition on the surface of electrostatically doped multilayer graphene. Applied Physics Letters, 2016, 109, .	3.3	4
34	Effective control of photoluminescence from ZnO nanowires by a-SiN_x:H decoration. Optics Letters, 2012, 37, 211.	3.3	3
35	Fluctuation-induced tunneling conduction in iodine-doped bilayer graphene. Journal of Applied Physics, 2018, 123, 244302.	2.5	2
36	Charge Transfer: Oxygen-Assisted Charge Transfer Between ZnO Quantum Dots and Graphene (Small) Tj ETQqQ) 0 0 rgBT /	Overlock 10

36