
Sung Hee Baek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2676551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systemic approaches using single cell transcriptome reveal that C/EBPÎ ³ regulates autophagy under amino acid starved condition. Nucleic Acids Research, 2022, 50, 7298-7309.	6.5	3
2	PHF20 is crucial for epigenetic control of starvation-induced autophagy through enhancer activation. Nucleic Acids Research, 2022, 50, 7856-7872.	6.5	6
3	Protocol for isolation of spermatids from mouse testes. STAR Protocols, 2021, 2, 100254.	0.5	5
4	Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases. Journal of Biomedical Science, 2021, 28, 41.	2.6	48
5	KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state. Journal of Hematology and Oncology, 2021, 14, 148.	6.9	18
6	Unraveling the physiological roles of retinoic acid receptor-related orphan receptor α. Experimental and Molecular Medicine, 2021, 53, 1278-1286.	3.2	19
7	Epigenetic Regulation in Breast Cancer. Advances in Experimental Medicine and Biology, 2021, 1187, 103-119.	0.8	3
8	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 4	62 Td (editio 1,430
9	PHF7 Modulates BRDT Stability and Histone-to-Protamine Exchange during Spermiogenesis. Cell Reports, 2020, 32, 107950.	2.9	23
10	The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes. Nucleic Acids Research, 2020, 48, 9037-9052.	6.5	15
11	Pontin arginine methylation by CARM1 is crucial for epigenetic regulation of autophagy. Nature Communications, 2020, 11, 6297.	5.8	36
12	Pontin-deficiency causes senescence in fibroblast cells and epidermal keratinocytes but induces apoptosis in cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118740.	1.9	1
13	Lysine-specific demethylase 3A is important for autophagic occurrence. Biochemical and Biophysical Research Communications, 2020, 526, 176-183.	1.0	3

14	Inhibition of LSD1 phosphorylation alleviates colitis symptoms induced by dextran sulfate sodiumInhibition of LSD1 phosphorylation alleviates colitis symptoms induced by dextran sulfate sodium. BMB Reports, 2020, 53, 385-390.	1.1	11
15	RORα is crucial for attenuated inflammatory response to maintain intestinal homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21140-21149.	3.3	52
16	Epigenetic regulation of the hypoxic response. Current Opinion in Physiology, 2019, 7, 1-8.	0.9	5
17	PKCα-LSD1-NF-κB-Signaling Cascade Is Crucial for Epigenetic Control of the Inflammatory Response. Molecular Cell, 2018, 69, 398-411.e6.	4.5	64
18	ULK1 O-GlcNAcylation Is Crucial for Activating VPS34 via ATG14L during Autophagy Initiation. Cell Reports, 2018, 25, 2878-2890.e4.	2.9	46

#	Article	IF	CITATIONS
19	KDM3A histone demethylase functions as an essential factor for activation of JAK2â [~] 'STAT3 signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11766-11771.	3.3	29
20	Mitosis-specific phosphorylation of Mis18α by Aurora B kinase enhances kinetochore recruitment of polo-like kinase 1. Oncotarget, 2018, 9, 1563-1576.	0.8	5
21	Sumoylation and Its Contribution to Cancer. Advances in Experimental Medicine and Biology, 2017, 963, 283-298.	0.8	39
22	Epigenetic Control of Autophagy: Nuclear Events Gain More Attention. Molecular Cell, 2017, 65, 781-785.	4.5	119
23	RORα2 requires LSD1 to enhance tumor progression in breast cancer. Scientific Reports, 2017, 7, 11994.	1.6	9
24	RORα controls hepatic lipid homeostasis via negative regulation of PPARγ transcriptional network. Nature Communications, 2017, 8, 162.	5.8	98
25	PKCα-mediated phosphorylation of LSD1 is required for presynaptic plasticity and hippocampal learning and memory. Scientific Reports, 2017, 7, 4912.	1.6	22
26	Enhancing inhibitory synaptic function reverses spatial memory deficits in Shank2 mutant mice. Neuropharmacology, 2017, 112, 104-112.	2.0	56
27	Skin-Specific Deletion of Mis18α Impedes Proliferation and Stratification of EpidermalÂKeratinocytes. Journal of Investigative Dermatology, 2017, 137, 414-421.	0.3	5
28	Shedding light on the DARC knight as a guardian of hematopoietic stem cell quiescence. Stem Cell Investigation, 2017, 4, 8-8.	1.3	0
29	Elevated Response to Type I IFN Enhances RANKL-Mediated Osteoclastogenesis in Usp18-Knockout Mice. Journal of Immunology, 2016, 196, 3887-3895.	0.4	24
30	Epigenetic and transcriptional regulation of autophagy. Autophagy, 2016, 12, 2248-2249.	4.3	52
31	KAI1(CD82)-DARC(CD234) axis in the stem cell niche. Cell Cycle, 2016, 15, 1945-1947.	1.3	2
32	The role of nuclear PKMζ in memory maintenance. Neurobiology of Learning and Memory, 2016, 135, 50-56.	1.0	21
33	AMPK–SKP2–CARM1 signalling cascade in transcriptional regulation of autophagy. Nature, 2016, 534, 553-557.	13.7	346
34	Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nature Communications, 2016, 7, 10347.	5.8	159
35	CD82/KAI1 Maintains the Dormancy of Long-Term Hematopoietic Stem Cells through Interaction with DARC-Expressing Macrophages. Cell Stem Cell, 2016, 18, 508-521.	5.2	130
36	Regulation of HIF-11 \pm stability by lysine methylation. BMB Reports, 2016, 49, 245-246.	1.1	25

#	Article	IF	CITATIONS
37	The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors. Frontiers in Molecular Biosciences, 2015, 2, 17.	1.6	37
38	Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells. Nature Communications, 2015, 6, 6810.	5.8	24
39	The hidden switches underlying RORα-mediated circuits that critically regulate uncontrolled cell proliferation. Journal of Molecular Cell Biology, 2014, 6, 338-348.	1.5	27
40	Emerging Roles of Orphan Nuclear Receptors in Cancer. Annual Review of Physiology, 2014, 76, 177-195.	5.6	32
41	Modification of ASC1 by UFM1 Is Crucial for ERα Transactivation and Breast Cancer Development. Molecular Cell, 2014, 56, 261-274.	4.5	156
42	Pontin is required for pre-TCR signaling at the β-selection checkpoint in T cell development. Biochemical and Biophysical Research Communications, 2014, 447, 44-50.	1.0	4
43	Phosphorylation of LSD1 by PKCα Is Crucial for Circadian Rhythmicity and Phase Resetting. Molecular Cell, 2014, 53, 791-805.	4.5	84
44	βTrCP-mediated ubiquitylation regulates protein stability of Mis18β in a cell cycle-dependent manner. Biochemical and Biophysical Research Communications, 2014, 443, 62-67.	1.0	8
45	Protein Kinase C-δ–Mediated Recycling of Active KIT in Colon Cancer. Clinical Cancer Research, 2013, 19, 4961-4971.	3.2	22
46	<i>Tsp66E</i> , the <i>Drosophila KAI1</i> homologue, and <i>Tsp74F</i> function to regulate ovarian follicle cell and wing development by stabilizing integrin localization. FEBS Letters, 2012, 586, 4031-4037.	1.3	8
47	Lineage conversion methodologies meet the reprogramming toolbox. Nature Cell Biology, 2012, 14, 892-899.	4.6	101
48	EZH2 Generates a Methyl Degron that Is Recognized by the DCAF1/DDB1/CUL4 E3ÂUbiquitin Ligase Complex. Molecular Cell, 2012, 48, 572-586.	4.5	200
49	Roles of Mis18α in Epigenetic Regulation of Centromeric Chromatin and CENP-A Loading. Molecular Cell, 2012, 46, 260-273.	4.5	71
50	UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Letters, 2011, 302, 128-135.	3.2	70
51	Breast cancer metastasis suppressor 1 (BRMS1) is destabilized by the Cul3–SPOP E3 ubiquitin ligase complex. Biochemical and Biophysical Research Communications, 2011, 415, 720-726.	1.0	53
52	When Signaling Kinases Meet Histones and Histone Modifiers in the Nucleus. Molecular Cell, 2011, 42, 274-284.	4.5	131
53	DNA Damage-Induced RORα Is Crucial for p53 Stabilization and Increased Apoptosis. Molecular Cell, 2011, 44, 797-810.	4.5	67
54	Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13510-13515.	3.3	100

#	Article	IF	CITATIONS
55	Induction of cellular apoptosis in human breast cancer by DLBS1425, a <i>Phaleria macrocarpa</i> compound extract, via down-regulation of PI3-kinase/AKT pathway. Cancer Biology and Therapy, 2010, 10, 814-823.	1.5	32
56	RORα Attenuates Wnt/β-Catenin Signaling by PKCα-Dependent Phosphorylation in Colon Cancer. Molecular Cell, 2010, 37, 183-195.	4.5	147
57	Negative Regulation of Hypoxic Responses via Induced Reptin Methylation. Molecular Cell, 2010, 39, 71-85.	4.5	152
58	ldentification of the KAl1 metastasis suppressor gene as a hypoxia target gene. Biochemical and Biophysical Research Communications, 2010, 393, 179-184.	1.0	18
59	Mouse models for breast cancer metastasis. Biochemical and Biophysical Research Communications, 2010, 394, 443-447.	1.0	70
60	Bcl3-dependent stabilization of CtBP1 is crucial for the inhibition of apoptosis and tumor progression in breast cancer. Biochemical and Biophysical Research Communications, 2010, 400, 396-402.	1.0	39
61	Chapter 7 Small Ubiquitinâ€Like Modifiers in Cellular Malignancy and Metastasis. International Review of Cell and Molecular Biology, 2009, 273, 265-311.	1.6	22
62	SUMOylation of RORα potentiates transcriptional activation function. Biochemical and Biophysical Research Communications, 2009, 378, 513-517.	1.0	43
63	Nuclear receptors and coregulators in inflammation and cancer. Cancer Letters, 2008, 267, 189-196.	3.2	18
64	When ATPases Pontin and Reptin Met Telomerase. Developmental Cell, 2008, 14, 459-461.	3.1	12
65	SUMOylation of pontin chromatin-remodeling complex reveals a signal integration code in prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20793-20798.	3.3	61
66	Two Novel Ubiquitin-fold Modifier 1 (Ufm1)-specific Proteases, UfSP1 and UfSP2. Journal of Biological Chemistry, 2007, 282, 5256-5262.	1.6	135
67	Macrophage/Cancer Cell Interactions Mediate Hormone Resistance by a Nuclear Receptor Derepression Pathway. Cell, 2006, 124, 615-629.	13.5	237
68	Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. Nature Cell Biology, 2006, 8, 631-639.	4.6	137
69	SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nature Cell Biology, 2006, 8, 1424-1431.	4.6	69
70	Negative Modulation of RXRα Transcriptional Activity by Small Ubiquitin-related Modifier (SUMO) Modification and Its Reversal by SUMO-specific Protease SUSP1. Journal of Biological Chemistry, 2006, 281, 30669-30677.	1.6	65
71	BTB Domain-containing Speckle-type POZ Protein (SPOP) Serves as an Adaptor of Daxx for Ubiquitination by Cul3-based Ubiquitin Ligase. Journal of Biological Chemistry, 2006, 281, 12664-12672.	1.6	178
72	Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3100-3105.	3.3	73

#	Article	IF	CITATIONS
73	A Novel Link Between SUMO Modification and Cancer Metastasis. Cell Cycle, 2006, 5, 1492-1495.	1.3	55
74	Transcriptional regulation of a metastasis suppressor gene by Tip60 and β-catenin complexes. Nature, 2005, 434, 921-926.	13.7	283
75	Molecular determinants of resistance to antiandrogen therapy. Nature Medicine, 2004, 10, 33-39.	15.2	2,117
76	MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 2004, 23, 4051-4060.	3.5	3,724
77	Nuclear receptor coregulators: their modification codes and regulatory mechanism by translocation. Biochemical and Biophysical Research Communications, 2004, 319, 707-707.	1.0	0
78	Nuclear receptor coregulators: their modification codes and regulatory mechanism by translocation. Biochemical and Biophysical Research Communications, 2004, 319, 707-714.	1.0	29
79	RORα Coordinates Reciprocal Signaling in Cerebellar Development through Sonic hedgehog and Calcium-Dependent Pathways. Neuron, 2003, 40, 1119-1131.	3.8	139
80	Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3245-3250.	3.3	139
81	Promoter-Specific Roles for Liver X Receptor/Corepressor Complexes in the Regulation of ABCA1 and SREBP1 Gene Expression. Molecular and Cellular Biology, 2003, 23, 5780-5789.	1.1	202
82	Antagonistic regulation of myogenesis by two deubiquitinating enzymes, UBP45 and UBP69. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9733-9738.	3.3	44
83	Exchange of N-CoR Corepressor and Tip60 Coactivator Complexes Links Gene Expression by NF-κB and β-Amyloid Precursor Protein. Cell, 2002, 110, 55-67.	13.5	543
84	Identification of a Wnt/Dvl/β-Catenin → Pitx2 Pathway Mediating Cell-Type-Specific Proliferation during Development. Cell, 2002, 111, 673-685.	13.5	519
85	Versatile protein tag, SUMO: Its enzymology and biological function. Journal of Cellular Physiology, 2002, 191, 257-268.	2.0	142
86	Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes and Development, 2001, 15, 3193-3207.	2.7	168
87	A New SUMO-1-specific Protease, SUSP1, That Is Highly Expressed in Reproductive Organs. Journal of Biological Chemistry, 2000, 275, 14102-14106.	1.6	127
88	Molecular Cloning of Chick UCH-6 Which Shares High Similarity with Human UCH-L3: Its Unusual Substrate Specificity and Tissue Distribution. Biochemical and Biophysical Research Communications, 1999, 264, 235-240.	1.0	7
89	Deubiquitinating Enzymes: Their Diversity and Emerging Roles. Biochemical and Biophysical Research Communications, 1999, 266, 633-640.	1.0	168
90	Isolation and Characterization of Cytosolic and Membrane-Bound Deubiquitinylating Enzymes from Bovine Brain. Journal of Biochemistry, 1999, 126, 612-623.	0.9	16

#	Article	IF	CITATIONS
91	A method for assaying deubiquitinating enzymes. Biological Procedures Online, 1998, 1, 92-99.	1.4	9
92	Molecular Cloning of a Novel Ubiquitin-specific Protease, UBP41, with Isopeptidase Activity in Chick Skeletal Muscle. Journal of Biological Chemistry, 1997, 272, 25560-25565.	1.6	40
93	Distinctive Roles of the Two ATP-binding Sites in ClpA, the ATPase Component of Protease Ti in Escherichia coli. Journal of Biological Chemistry, 1995, 270, 8087-8092.	1.6	39