
Jianling Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2676537/publications.pdf Version: 2024-02-01

IIANLING XIE

#	Article	IF	CITATIONS
1	Eukaryotic elongation factor 2 kinase regulates foam cell formation via translation of CD36. FASEB Journal, 2022, 36, e22154.	0.5	3
2	Da-Chai-Hu-Tang Protects From Acute Intrahepatic Cholestasis by Inhibiting Hepatic Inflammation and Bile Accumulation via Activation of PPARI±. Frontiers in Pharmacology, 2022, 13, 847483.	3.5	4
3	Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis. Cellular and Molecular Life Sciences, 2021, 78, 249-270.	5.4	14
4	Bicuculline regulated protein synthesis is dependent on Homer1 and promotes its interaction with eEF2K through mTORC1â€dependent phosphorylation. Journal of Neurochemistry, 2021, 157, 1086-1101.	3.9	5
5	mTOR Signaling Pathways. , 2021, , 1-7.		0
6	Regulation mTOR and its Substrates. , 2021, , 614-630.		0
7	TSC-insensitive Rheb mutations induce oncogenic transformation through a combination of constitutively active mTORC1 signalling and proteome remodelling. Cellular and Molecular Life Sciences, 2021, 78, 4035-4052.	5.4	5
8	Constitutively active Rheb mutants [T23M] and [E40K] drive increased production and secretion of recombinant protein in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2021, 118, 2422-2434.	3.3	1
9	Regulation of mRNA Translation by Hormone Receptors in Breast and Prostate Cancer. Cancers, 2021, 13, 3254.	3.7	10
10	The composition of the gut microbiota following early-life antibiotic exposure affects host health and longevity in later life. Cell Reports, 2021, 36, 109564.	6.4	31
11	A feedback loop between the androgen receptor and 6-phosphogluoconate dehydrogenase (6PGD) drives prostate cancer growth. ELife, 2021, 10, .	6.0	16
12	mTOR Signaling Pathways. , 2021, , 1010-1016.		0
13	Eukaryotic elongation factor 2 kinase promotes angiogenesis in hepatocellular carcinomaviaPI3K/Akt and STAT3. International Journal of Cancer, 2020, 146, 1383-1395.	5.1	40
14	Cyclosporin A but not FK506 activates the integrated stress response in human cells. Journal of Biological Chemistry, 2020, 295, 15134-15143.	3.4	3
15	The prohibitin-binding compound fluorizoline affects multiple components of the translational machinery and inhibits protein synthesis. Journal of Biological Chemistry, 2020, 295, 9855-9867.	3.4	9
16	The Lifeact-EGFP mouse is a translationally controlled fluorescent reporter of T cell activation. Journal of Cell Science, 2020, 133, .	2.0	9
17	The eEF2 kinase-induced STAT3 inactivation inhibits lung cancer cell proliferation by phosphorylation of PKM2. Cell Communication and Signaling, 2020, 18, 25.	6.5	23
18	The gene for the lysosomal protein LAMP3 is a direct target of the transcription factor ATF4. Journal of Biological Chemistry, 2020, 295, 7418-7430.	3.4	20

JIANLING XIE

#	Article	IF	CITATIONS
19	MAPK-interacting kinase 2 (MNK2) regulates adipocyte metabolism independently of its catalytic activity. Biochemical Journal, 2020, 477, 2735-2754.	3.7	6
20	eEF2K enhances expression of PD-L1 by promoting the translation of its mRNA. Biochemical Journal, 2020, 477, 4367-4381.	3.7	25
21	Transcriptional and metabolic rewiring of colorectal cancer cells expressing the oncogenic KRASG13D mutation. British Journal of Cancer, 2019, 121, 37-50.	6.4	41
22	Ablation of elongation factor 2 kinase enhances heat-shock protein 90 chaperone expression and protects cells under proteotoxic stress. Journal of Biological Chemistry, 2019, 294, 7169-7176.	3.4	14
23	Regulation of the Elongation Phase of Protein Synthesis Enhances Translation Accuracy and Modulates Lifespan. Current Biology, 2019, 29, 737-749.e5.	3.9	60
24	The MAP kinase-interacting kinases (MNKs) as targets in oncology. Expert Opinion on Therapeutic Targets, 2019, 23, 187-199.	3.4	30
25	Design, synthesis and activity of Mnk1 and Mnk2 selective inhibitors containing thieno[2,3-d]pyrimidine scaffold. European Journal of Medicinal Chemistry, 2019, 162, 735-751.	5.5	28
26	Eukaryotic elongation factor 2 kinase upregulates the expression of proteins implicated in cell migration and cancer cell metastasis. International Journal of Cancer, 2018, 142, 1865-1877.	5.1	32
27	Who does TORC2 talk to?. Biochemical Journal, 2018, 475, 1721-1738.	3.7	29
28	mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Molecular and Cellular Biology, 2017, 37, .	2.3	51
29	A novel fluorescent probe reveals starvation controls the commitment of amyloid precursor protein to the lysosome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1554-1565.	4.1	19
30	Eukaryotic Elongation Factor 2 Kinase (eEF2K) in Cancer. Cancers, 2017, 9, 162.	3.7	49
31	mTOR inhibitors in cancer therapy. F1000Research, 2016, 5, 2078.	1.6	228
32	mTORC1 signalling and elF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells. Biochemical Journal, 2016, 473, 4651-4664.	3.7	49
33	Elongation factor 2 kinase promotes cell survival by inhibiting protein synthesis without inducing autophagy. Cellular Signalling, 2016, 28, 284-293.	3.6	36
34	Characterization of p75 neurotrophin receptor expression in human dental pulp stem cells. International Journal of Developmental Neuroscience, 2016, 53, 90-98.	1.6	17
35	Quantitative Non-canonical Amino Acid Tagging (QuaNCAT) Proteomics Identifies Distinct Patterns of Protein Synthesis Rapidly Induced by Hypertrophic Agents in Cardiomyocytes, Revealing New Aspects of Metabolic Remodeling. Molecular and Cellular Proteomics, 2016, 15, 3170-3189.	3.8	18
36	Cambogin exerts anti-proliferative and pro-apoptotic effects on breast adenocarcinoma through the induction of NADPH oxidase 1 and the alteration of mitochondrial morphology and dynamics. Oncotarget, 2016, 7, 50596-50611.	1.8	18

JIANLING XIE

#	Article	IF	CITATIONS
37	Guttiferone K suppresses cell motility and metastasis of hepatocellular carcinoma by restoring aberrantly reduced profilin 1. Oncotarget, 2016, 7, 56650-56663.	1.8	35
38	Molecular Mechanism for the Control of Eukaryotic Elongation Factor 2 Kinase by pH: Role in Cancer Cell Survival. Molecular and Cellular Biology, 2015, 35, 1805-1824.	2.3	39
39	Cambogin Induces Caspase-Independent Apoptosis through the ROS/JNK Pathway and Epigenetic Regulation in Breast Cancer Cells. Molecular Cancer Therapeutics, 2015, 14, 1738-1749.	4.1	37
40	Regulated stability of eukaryotic elongation factor 2 kinase requires intrinsic but not ongoing activity. Biochemical Journal, 2015, 467, 321-331.	3.7	18
41	The MAP kinase-interacting kinases regulate cell migration, vimentin expression and eIF4E/CYFIP1 binding. Biochemical Journal, 2015, 467, 63-76.	3.7	58
42	Signaling crosstalk between the mTOR complexes. Translation, 2014, 2, e28174.	2.9	40
43	Eukaryotic Elongation Factor 2 Kinase Activity Is Controlled by Multiple Inputs from Oncogenic Signaling. Molecular and Cellular Biology, 2014, 34, 4088-4103.	2.3	84
44	Exendin-4 stimulates islet cell replication via the IGF1 receptor activation of mTORC1/S6K1. Journal of Molecular Endocrinology, 2014, 53, 105-115.	2.5	25
45	Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling, 2013, 25, 2185-2197.	3.6	410
46	Crosstalk between mTOR complexes. Nature Cell Biology, 2013, 15, 1263-1265.	10.3	77
47	The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic β-cell mass: implications in the development of type-2 diabetes. Cellular and Molecular Life Sciences, 2012, 69, 1289-1304.	5.4	58
48	Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2). Diabetologia, 2012, 55, 1355-1365.	6.3	64
49	cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. Cellular Signalling, 2011, 23, 1927-1935.	3.6	56
50	Trends in advanced glycation end products research in diabetes mellitus and its complications. Molecular and Cellular Biochemistry, 2010, 341, 33-41.	3.1	62
51	Molecular susceptibility to glycation and its implication in diabetes mellitus and related diseases. Molecular and Cellular Biochemistry, 2010, 344, 185-193.	3.1	31
52	Identification of cAMP-Dependent Kinase as a Third in Vivo Ribosomal Protein S6 Kinase in Pancreatic β-Cells. Journal of Molecular Biology, 2009, 389, 480-494.	4.2	47