Bao-Hua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/267630/publications.pdf

Version: 2024-02-01

8755 12272 19,027 184 75 133 citations h-index g-index papers 186 186 186 15739 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Designing Advanced Liquid Electrolytes for Alkali Metal Batteries: Principles, Progress, and Perspectives. Energy and Environmental Materials, 2023, 6, .	12.8	19
2	A Comparative Investigation of Single Crystal and Polycrystalline Niâ€Rich NCMs as Cathodes for Lithiumâ€Ion Batteries. Energy and Environmental Materials, 2023, 6, .	12.8	23
3	Precise separation of spent lithium-ion cells in water without discharging for recycling. Energy Storage Materials, 2022, 45, 1092-1099.	18.0	49
4	Smart construction of multifunctional Li1.5Al0.5Ge1.5(PO4)3 Li intermediate interfaces for solid-state batteries. Energy Storage Materials, 2022, 46, 68-75.	18.0	34
5	Sodiumâ€rich <scp>NASICON</scp> â€structured cathodes for boosting the energy density and lifespan of sodiumâ€freeâ€anode sodium metal batteries. InformaÄnÃ-Materiály, 2022, 4, .	17.3	41
6	Physical and Chemical Adsorption of Polysulfides. Modern Aspects of Electrochemistry, 2022, , 111-163.	0.2	1
7	Room-temperature extraction of individual elements from charged spent LiFePO4 batteries. Rare Metals, 2022, 41, 1595-1604.	7.1	27
8	A single-crystal nickel-rich material as a highly stable cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 19680-19689.	10.3	18
9	Lithium metal recycling from spent lithium-ion batteries by cathode overcharging process. Rare Metals, 2022, 41, 1843-1850.	7.1	24
10	Synthesis design of interfacial nanostructure for nickel-rich layered cathodes. Nano Energy, 2022, 97, 107119.	16.0	14
11	Multi-functional modification of nickel-rich lithium cathode materials using Na ₂ PO ₃ F. Journal of Materials Chemistry A, 2022, 10, 11437-11448.	10.3	4
12	Transference Number Reinforced-Based Gel Copolymer Electrolyte for Dendrite-Free Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26612-26621.	8.0	11
13	Mildly-expanded graphite with adjustable interlayer distance as high-performance anode for potassium-ion batteries. Carbon, 2021, 172, 200-206.	10.3	63
14	A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Metals, 2021, 40, 1431-1436.	7.1	42
15	Effect of Fluoroethylene Carbonate on Solid Electrolyte Interphase Formation of the SiO/C Anode Observed by In Situ Atomic Force Microscopy. ACS Applied Energy Materials, 2021, 4, 492-499.	5.1	25
16	Deep Eutectic Solvents for Boosting Electrochemical Energy Storage and Conversion: A Review and Perspective. Advanced Functional Materials, 2021, 31, 2011102.	14.9	172
17	Multi-ion Strategy toward Highly Durable Calcium/Sodium–Sulfur Hybrid Battery. Nano Letters, 2021, 21, 3548-3556.	9.1	12
18	Lithium Argyrodite as Solid Electrolyte and Cathode Precursor for Solid tate Batteries with Long Cycle Life. Advanced Energy Materials, 2021, 11, 2101370.	19.5	56

#	Article	IF	CITATIONS
19	Heterogeneous Degradation in Thick Nickelâ€Rich Cathodes During Highâ€Temperature Storage and Mitigation of Thermal Instability by Regulating Cationic Disordering. Small, 2021, 17, e2102055.	10.0	8
20	Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, 185, 152-160.	10.3	14
21	Promoting the reversibility of lithium ion/lithium metal hybrid graphite anode by regulating solid electrolyte interface. Nano Energy, 2021, 90, 106510.	16.0	20
22	A green water-induced spinel heterostructure interface enabling high performance lithium and manganese rich oxides. Journal of Materials Chemistry A, 2021, 9, 20576-20584.	10.3	3
23	Synthesis design of a 3D interfacial structure for highly reversible lithium deposition. Journal of Materials Chemistry A, 2021, 9, 25004-25012.	10.3	6
24	Gradient Structure Design of a Floatable Host for Preferential Lithium Deposition. Nano Letters, 2021, 21, 10252-10259.	9.1	10
25	Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification. Energy Storage Materials, 2020, 25, 613-620.	18.0	72
26	A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3â ⁻ ' in carbonate electrolyte. Energy Storage Materials, 2020, 24, 229-236.	18.0	31
27	Restructured rimous copper foam as robust lithium host. Energy Storage Materials, 2020, 26, 250-259.	18.0	34
28	Efficient Construction of a C60 Interlayer for Mechanically Robust, Dendrite-free, and Ultrastable Solid-State Batteries. IScience, 2020, 23, 101636.	4.1	11
29	Conductive Polyacrylic Acid-Polyaniline as a Multifunctional Binder for Stable Organic Quinone Electrodes of Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39630-39638.	8.0	37
30	Horizontal Stress Release for Protuberanceâ€Free Li Metal Anode. Advanced Functional Materials, 2020, 30, 2002522.	14.9	22
31	Simultaneously Homogenized Electric Field and Ionic Flux for Reversible Ultrahigh-Areal-Capacity Li Deposition. Nano Letters, 2020, 20, 5662-5669.	9.1	29
32	Electrosprayed Robust Graphene Layer Constructing Ultrastable Electrode Interface for High-Voltage Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37034-37046.	8.0	13
33	In Situ Observation of Interface Evolution on a Graphite Anode by Scanning Electrochemical Microscopy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37047-37053.	8.0	30
34	Facile Synthesis of Antâ€Nestâ€Like Porous Duplex Copper as Deeply Cycling Host for Lithium Metal Anodes. Small, 2020, 16, e2001784.	10.0	33
35	Nanoscale observation of the solid electrolyte interface and lithium dendrite nucleation–growth process during the initial lithium electrodeposition. Journal of Materials Chemistry A, 2020, 8, 18348-18357.	10.3	19
36	Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nature Communications, 2020, 11, 4188.	12.8	226

#	Article	IF	CITATIONS
37	Sacrificial Poly(propylene carbonate) Membrane for Dispersing Nanoparticles and Preparing Artificial Solid Electrolyte Interphase on Li Metal Anode. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27087-27094.	8.0	8
38	Optimization of the preparation conditions of KOH-activated, PAN-based carbon ellipsoids by orthogonal experimental analysis. New Carbon Materials, 2020, 35, 131-139.	6.1	8
39	Boosting Sodium Storage in Two-Dimensional Phosphorene/Ti ₃ C ₂ T _{<i>x</i>} MXene Nanoarchitectures with Stable Fluorinated Interphase. ACS Nano, 2020, 14, 3651-3659.	14.6	155
40	Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of <i>ex situ</i> anodic pretreatment and an in-built gel polymer electrolyte. Journal of Materials Chemistry A, 2020, 8, 7197-7204.	10.3	91
41	Understanding the Conductive Carbon Additive on Electrode/Electrolyte Interface Formation in Lithium-Ion Batteries via in situ Scanning Electrochemical Microscopy. Frontiers in Chemistry, 2020, 8, 114.	3.6	15
42	Deepâ€Eutecticâ€Solventâ€Based Selfâ€Healing Polymer Electrolyte for Safe and Longâ€Life Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 9134-9142.	13.8	292
43	Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. Journal of the American Chemical Society, 2020, 142, 5742-5750.	13.7	206
44	Quasi-Solid-State Dual-Ion Sodium Metal Batteries for Low-Cost Energy Storage. CheM, 2020, 6, 902-918.	11.7	137
45	Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10479-10489.	8.0	57
46	Basal Nanosuit of Graphite for High-Energy Hybrid Li Batteries. ACS Nano, 2020, 14, 1837-1845.	14.6	40
47	Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22901-22909.	8.0	48
48	Self-Healing Janus Interfaces for High-Performance LAGP-Based Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 1456-1464.	17.4	104
49	Advanced Matrixes for Binderâ€Free Nanostructured Electrodes in Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1908445.	21.0	108
50	Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Storage Materials, 2019, 18, 320-327.	18.0	102
51	High-performance Li ₆ PS ₅ Cl-based all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18612-18618.	10.3	40
52	Interconnected Ultrasmall V ₂ O ₃ and Li ₄ Ti ₅ O ₁₂ Particles Construct Robust Interfaces for Long-Cycling Anodes of Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29993-30000.	8.0	12
53	Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO ₂ nanowires. Journal of Materials Chemistry A, 2019, 7, 19297-19304.	10.3	25
54	Preparation of regenerated silk fibroinâ€based heatâ€management sponge for wound healing. Journal of Applied Polymer Science, 2019, 136, 48173.	2.6	8

#	Article	IF	CITATIONS
55	A Conductive/Ferroelectric Hybrid Interlayer for Highly Improved Trapping of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2019, 6, 1900984.	3.7	12
56	Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1903229.	14.9	112
57	Utilizing an autogenously protective atmosphere to synthesize a Prussian white cathode with ultrahigh capacity-retention for potassium-ion batteries. Chemical Communications, 2019, 55, 1255-1258.	4.1	24
58	An Efficient Synthetic Method to Prepare High-Performance Ni-rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ for Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 7403-7411.	5.1	25
59	Abundant grain boundaries activate highly efficient lithium ion transportation in high rate Li4Ti5O12 compact microspheres. Journal of Materials Chemistry A, 2019, 7, 1168-1176.	10.3	28
60	High-Performance Quasi-Solid-State MXene-Based Li–I Batteries. ACS Central Science, 2019, 5, 365-373.	11.3	78
61	Investigation of Interfacial Changes on Grain Boundaries of Li(Ni _{0.5} Co _{0.2} Mn _{0.3})O ₂ in the Initial Overcharge Process. Advanced Materials Interfaces, 2019, 6, 1801764.	3.7	17
62	Crystallized lithium titanate nanosheets prepared <i>via</i> spark plasma sintering for ultra-high rate lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 455-460.	10.3	26
63	Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. Journal of Materials Chemistry A, 2019, 7, 23378-23415.	10.3	248
64	Comprehensive Review of P2-Type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ , a Potential Cathode for Practical Application of Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22051-22066.	8.0	148
65	Lowering the charge overpotential of Li ₂ S <i>via</i> the inductive effect of phenyl diselenide in Liâ€"S batteries. Chemical Communications, 2019, 55, 7655-7658.	4.1	30
66	In-Plane Highly Dispersed Cu ₂ O Nanoparticles for Seeded Lithium Deposition. Nano Letters, 2019, 19, 4601-4607.	9.1	75
67	Sn ₄ P ₃ /TiC Composites as Liâ€lon Battery Anode with High Volumetric Capacity and Good Rate Capability. Energy Technology, 2019, 7, 1900371.	3.8	5
68	Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. Advanced Materials, 2019, 31, e1806620.	21.0	390
69	Understanding the cathode electrolyte interface formation in aqueous electrolyte by scanning electrochemical microscopy. Journal of Materials Chemistry A, 2019, 7, 12993-12996.	10.3	49
70	Evolution of Solid Electrolyte Interface on TiO ₂ Electrodes in an Aqueous Li-Ion Battery Studied Using Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2019, 123, 12797-12806.	3.1	30
71	A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 13225-13233.	10.3	49
72	Increase and discretization of the energy barrier for individual LiNi _x Co _y Mn _y O ₂ (<i>xx</i> + 2 <i>y</i> =1) particles with the growth of a Li ₂ CO ₃ surface film. Journal of Materials Chemistry A, 2019, 7, 12723-12731.	10.3	43

#	Article	IF	CITATIONS
73	Thermal design and optimization of lithium ion batteries for unmanned aerial vehicles. Energy Storage, 2019, 1, e48.	4.3	10
74	A Simple Method for the Complete Performance Recovery of Degraded Ni-rich LiNi _{0.70} Co _{0.15} Mn _{0.15} O ₂ Cathode via Surface Reconstruction. ACS Applied Materials & Surface Reconstruction.	8.0	89
75	Investigations on the Surface Degradation of LiNi _{1/3} 0 ₂ after Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 7378-7385.	6.7	15
76	High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes. ACS Applied Materials & Diterfaces, 2019, 11, 15646-15655.	8.0	43
77	Constructing Effective Interfaces for Li _{1.5} (PO ₄) ₃ Pellets To Achieve Room-Temperature Hybrid Solid-State Lithium Metal Batteries. ACS Applied Materials & Diterfaces, 2019. 11. 9911-9918.	8.0	77
78	High electrochemical stability of a 3D cross-linked network PEO@nano-SiO ₂ composite polymer electrolyte for lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 6832-6839.	10.3	164
79	Co–B Nanoflakes as Multifunctional Bridges in ZnCo ₂ O ₄ Microâ€∤Nanospheres for Superior Lithium Storage with Boosted Kinetics and Stability. Advanced Energy Materials, 2019, 9, 1803612.	19.5	114
80	Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nature Communications, 2019, 10, 725.	12.8	289
81	State-of-health (SOH) evaluation on lithium-ion battery by simulating the voltage relaxation curves. Electrochimica Acta, 2019, 303, 183-191.	5.2	70
82	Correlation between Microstructure and Potassium Storage Behavior in Reduced Graphene Oxide Materials. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45578-45585.	8.0	34
83	Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. Journal of Materials Chemistry A, 2019, 7, 24857-24867.	10.3	48
84	Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon, 2019, 141, 16-24.	10.3	54
85	Allâ€Solidâ€State Batteries: Low Resistance–Integrated Allâ€Solidâ€State Battery Achieved by Li ₇ La ₃ Zr ₂ O ₁₂ Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder (Adv. Funct. Mater. 1/2019). Advanced Functional Materials. 2019, 29, 1970006.	14.9	12
86	Low Resistanceâ€"Integrated Allâ€Solidâ€State Battery Achieved by Li ₇ La ₃ Zr ₂ O ₁₂ Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder. Advanced Functional Materials, 2019, 29, 1805301.	14.9	390
87	Hierarchical MoS ₂ /Carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 5668-5677.	10.3	128
88	Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendriteâ€Free Lithium Metal Anode Current Collector. Advanced Energy Materials, 2018, 8, 1800266.	19.5	336
89	An interwoven MoO ₃ @CNT scaffold interlayer for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 8612-8619.	10.3	141
90	Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources, 2018, 389, 120-134.	7.8	359

An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured		
polymer electrolyte. Energy and Environmental Science, 2018, 11, 941-951.	30.8	731
Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode. Carbon, 2018, 129, 667-673.	10.3	58
a€œAllâ€inâ€One―Nanoparticles for Trimodality Imagingâ€Guided Intracellular Photoâ€magnetic Hyperther Therapy under Intravenous Administration. Advanced Functional Materials, 2018, 28, 1705710.	rmia 14.9	90
Hierarchically structured carbon nanomaterials for electrochemical energy storage applications. Journal of Materials Research, 2018, 33, 1058-1073.	2.6	33
Progress and Perspective of Solidâ€State Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707570.	14.9	194
Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. ACS Nano, 2018, 12, 3140-3148.	14.6	439
The different Li/Na ion storage mechanisms of nano Sb 2 O 3 anchored on graphene. Journal of Power Sources, 2018, 385, 114-121.	7.8	41
Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2/Graphite pouch cell. Electrochimica Acta, 2018, 269, 378-387.	5.2	62
Controlled synthesis of anisotropic hollow ZnCo2O4 octahedrons for high-performance lithium storage. Energy Storage Materials, 2018, 11, 184-190.	18.0	63
Deterioration mechanism of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ /graphite–SiO _x power batteries under high temperature and discharge cycling conditions. Journal of Materials Chemistry A, 2018, 6, 65-72.	10.3	66
Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. Journal of Applied Polymer Science, 2018, 135, 45787.	2.6	40
Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon, 2018, 127, 459-468.	10.3	123
Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon, 2018, 127, 424-431.	10.3	150
Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Research, 2018, 11, 892-904.	10.4	110
Combination Effect of Bulk Structure Change and Surface Rearrangement on the Electrochemical Kinetics of LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ During Initial Charging Processes. ACS Applied Materials & Charging Processes. ACS Applied Materials & Charging Processes.	8.0	27
Redoxâ€Active Organic Sodium Anthraquinoneâ€2â€Sulfonate (AQS) Anchored on Reduced Graphene Oxide for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1802088.	19.5	147
A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nature Communications, 2018, 9, 3870.	12.8	367

Solid-State Electrolytes: Progress and Perspective of Solid-State Lithium-Sulfur Batteries (Adv. Funct.) Tj ETQq0 0 0 $_{14.9}^{6}$ T/Overlock 10 Tf

7

108

#	Article	IF	CITATIONS
109	Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon, 2018, 140, 296-305.	10.3	88
110	Electrospun Nâ€Doped Hierarchical Porous Carbon Nanofiber with Improved Degree of Graphitization for Highâ€Performance Lithium Ion Capacitor. Chemistry - A European Journal, 2018, 24, 10460-10467.	3.3	55
111	Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 14797-14804.	10.3	103
112	A Stable Quasi‧olid‧tate Sodium–Sulfur Battery. Angewandte Chemie - International Edition, 2018, 57, 10168-10172.	13.8	178
113	Nanostructured Anode Materials for Nonâ€aqueous Lithium Ion Hybrid Capacitors. Energy and Environmental Materials, 2018, 1, 75-87.	12.8	97
114	Fe ₃ O ₄ -Decorated Porous Graphene Interlayer for High-Performance Lithiumâ€"Sulfur Batteries. ACS Applied Materials & Enterfaces, 2018, 10, 26264-26273.	8.0	117
115	Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 1828-1833.	5.1	78
116	NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 17057-17066.	10.3	149
117	Spherical Li Deposited inside 3D Cu Skeleton as Anode with Ultrastable Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20244-20249.	8.0	113
118	Advances in Understanding Materials for Rechargeable Lithium Batteries by Atomic Force Microscopy. Energy and Environmental Materials, 2018, 1, 28-40.	12.8	80
119	Achieving Low Overpotential Lithium–Oxygen Batteries by Exploiting a New Electrolyte Based on <i>N</i> , <i>N</i> ,2,313-318.	17.4	30
120	Dendriteâ€Free, Highâ€Rate, Longâ€Life Lithium Metal Batteries with a 3D Crossâ€Linked Network Polymer Electrolyte. Advanced Materials, 2017, 29, 1604460.	21.0	604
121	Suppressing Selfâ€Discharge and Shuttle Effect of Lithium–Sulfur Batteries with V ₂ O ₅ â€Decorated Carbon Nanofiber Interlayer. Small, 2017, 13, 1602539.	10.0	190
122	Siliconâ€Sulfur Batteries: A Novel Lithiated Silicon–Sulfur Battery Exploiting an Optimized Solidâ€Like Electrolyte to Enhance Safety and Cycle Life (Small 3/2017). Small, 2017, 13, .	10.0	0
123	In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy, 2017, 33, 45-54.	16.0	205
124	A review of gassing behavior in Li ₄ Ti ₅ O ₁₂ -based lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 6368-6381.	10.3	157
125	Influence of charge rate on the cycling degradation of LiFePO4/mesocarbon microbead batteries under low temperature. Ionics, 2017, 23, 1967-1978.	2.4	12
126	Recent innovative configurations in high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 5222-5234.	10.3	115

#	Article	IF	Citations
127	Acetic acid-induced preparation of anatase TiO ₂ mesocrystals at low temperature for enhanced Li-ion storage. Journal of Materials Chemistry A, 2017, 5, 12236-12242.	10.3	26
128	A Dual-Function Na ₂ SO ₄ Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium-Sulfur Batteries. Small, 2017, 13, 1700358.	10.0	26
129	Discovering a First-Order Phase Transition in the Li–CeO ₂ System. Nano Letters, 2017, 17, 1282-1288.	9.1	27
130	Study on the reversible capacity loss of layered oxide cathode during low-temperature operation. Journal of Power Sources, 2017, 342, 24-30.	7.8	42
131	General synthesis of high-performing magneto-conjugated polymer core–shell nanoparticles for multifunctional theranostics. Nano Research, 2017, 10, 704-717.	10.4	26
132	Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO ₂ -B and Anatase Dual-Phase Nanowires. ACS Applied Materials & Dual-Phase Nanowires. ACS Applied Materials & Dual-Phase Nanowires.	8.0	57
133	Advanced Nanostructured Anode Materials for Sodiumâ€lon Batteries. Small, 2017, 13, 1701835.	10.0	206
134	A Facile Surface Reconstruction Mechanism toward Better Electrochemical Performance of Li ₄ Ti ₅ O ₁₂ in Lithiumâ€lon Battery. Advanced Science, 2017, 4, 1700205.	11.2	37
135	Energy Storage: A Dual-Function Na2 SO4 Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium-Sulfur Batteries (Small 27/2017). Small, 2017, 13, .	10.0	0
136	In-situ polymerized lithium polyacrylate (PAALi) as dual-functional lithium source for high-performance layered oxide cathodes. Electrochimica Acta, 2017, 249, 43-51.	5. 2	14
137	A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. Journal of Materials Chemistry A, 2017, 5, 18888-18895.	10.3	85
138	A Stable Crossâ€Linked Binder Network for SnO ₂ Anode with Enhanced Sodiumâ€lon Storage Performance. ChemistrySelect, 2017, 2, 11365-11369.	1.5	12
139	Twinborn TiO ₂ –TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 1694-1703.	30.8	884
140	An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy, 2017, 39, 291-296.	16.0	142
141	Li-ion and Na-ion transportation and storage properties in various sized TiO ₂ spheres with hierarchical pores and high tap density. Journal of Materials Chemistry A, 2017, 5, 4359-4367.	10.3	78
142	A Novel Lithiated Silicon–Sulfur Battery Exploiting an Optimized Solid‣ike Electrolyte to Enhance Safety and Cycle Life. Small, 2017, 13, 1602015.	10.0	33
143	A sliced orange-shaped ZnCo 2 O 4 material as anode for high-performance lithium ion battery. Energy Storage Materials, 2017, 6, 61-69.	18.0	71
144	An Ultralong, Highly Oriented Nickelâ€Nanowireâ€Array Electrode Scaffold for Highâ€Performance Compressible Pseudocapacitors. Advanced Materials, 2016, 28, 4105-4110.	21.0	171

#	Article	IF	CITATIONS
145	Large Polarization of Li ₄ Ti ₅ O ₁₂ Lithiated to 0 V at Large Charge/Discharge Rates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18788-18796.	8.0	51
146	A Carbonâ€Sulfur Hybrid with Pomegranateâ€ike Structure for Lithiumâ€Sulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 1343-1347.	3.3	17
147	How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries. Carbon, 2016, 103, 356-362.	10.3	87
148	Mesoporous Cr ₂ O ₃ nanotubes as an efficient catalyst for Li–O ₂ batteries with low charge potential and enhanced cyclic performance. Journal of Materials Chemistry A, 2016, 4, 7727-7735.	10.3	28
149	Highly Flexible Graphene/Mn ₃ O ₄ Nanocomposite Membrane as Advanced Anodes for Li-lon Batteries. ACS Nano, 2016, 10, 6227-6234.	14.6	291
150	Dual-functional hard template directed one-step formation of a hierarchical porous carbon–carbon nanotube hybrid for lithium–sulfur batteries. Chemical Communications, 2016, 52, 12143-12146.	4.1	63
151	Abuse tolerance behavior of layered oxide-based Li-ion battery during overcharge and over-discharge. RSC Advances, 2016, 6, 76897-76904.	3.6	80
152	Ultrafine TiO ₂ Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23105-23113.	8.0	200
153	Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy, 2016, 30, 1-8.	16.0	179
154	Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 12973-12980.	10.3	64
155	Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes. Advanced Materials, 2016, 28, 6932-6939.	21.0	751
156	SiO ₂ Hollow Nanosphereâ€Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Advanced Energy Materials, 2016, 6, 1502214.	19.5	346
157	A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon, 2016, 98, 582-591.	10.3	128
158	Monodispersed SnO 2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries. Energy Storage Materials, 2016, 3, 98-105.	18.0	60
159	Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy, 2016, 22, 278-289.	16.0	382
160	Influence of over-discharge on the lifetime and performance of LiFePO ₄ /graphite batteries. RSC Advances, 2016, 6, 30474-30483.	3.6	71
161	Electrolytes: In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-lon Batteries (Adv. Energy Mater. 15/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	19.5	2
162	In Situ Synthesis of a Hierarchical Allâ€Solidâ€State Electrolyte Based on Nitrile Materials for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500353.	19.5	300

#	Article	IF	CITATIONS
163	Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 7112-7120.	10.3	99
164	Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon, 2015, 87, 347-356.	10.3	131
165	Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li ₄ Ti ₅ O ₁₂ Spheres of Densely Packed Nanocrystallites. Chemistry of Materials, 2015, 27, 5647-5656.	6.7	142
166	Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. Journal of Materials Chemistry A, 2015, 3, 13340-13349.	10.3	71
167	N and S co-doped porous carbon spheres prepared using <scp>l</scp> -cysteine as a dual functional agent for high-performance lithium–sulfur batteries. Chemical Communications, 2015, 51, 17720-17723.	4.1	121
168	A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 20218-20224.	10.3	83
169	Synthesis of Lithium Iron Phosphate/Carbon Microspheres by Using Polyacrylic Acid Coated Iron Phosphate Nanoparticles Derived from Iron(III) Acrylate. ChemSusChem, 2015, 8, 1009-1016.	6.8	31
170	Enhanced performance of interconnected LiFePO4/C microspheres with excellent multiple conductive network and subtle mesoporous structure. Electrochimica Acta, 2015, 152, 398-407.	5.2	75
171	Highly Crystalline Lithium Titanium Oxide Sheets Coated with Nitrogenâ€Doped Carbon enable Highâ€Rate Lithiumâ€lon Batteries. ChemSusChem, 2014, 7, 2567-2574.	6.8	55
172	Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery. Journal of Materials Chemistry A, 2014, 2, 20059-20066.	10.3	92
173	A three-dimensional graphene skeleton as a fast electron and ion transport network for electrochemical applications. Journal of Materials Chemistry A, 2014, 2, 3031.	10.3	96
174	Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment. Energy and Environmental Science, 2014, 7, 3674-3682.	30.8	136
175	Tailoring Microstructure of Grapheneâ∈Based Membrane by Controlled Removal of Trapped Water Inspired by the Phase Diagram. Advanced Functional Materials, 2014, 24, 3456-3463.	14.9	67
176	High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery. Journal of Power Sources, 2014, 268, 882-886.	7.8	25
177	Scalable fabrication of MnO ₂ nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy and Environmental Science, 2014, 7, 2652-2659.	30.8	247
178	Raman Evidence for Late Stage Disproportionation in a Li–O ₂ Battery. Journal of Physical Chemistry Letters, 2014, 5, 2705-2710.	4.6	144
179	Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts. Scientific Reports, 2014, 4, 6289.	3.3	67
180	Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. Journal of Materials Chemistry A, 2013, 1, 12432.	10.3	163

#	Article	IF	CITATIONS
181	Liâ€ion Reaction to Improve the Rate Performance of Nanoporous Anatase TiO ₂ Anodes. Energy Technology, 2013, 1, 668-674.	3.8	30
182	Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy and Environmental Science, 2012, 5, 9595.	30.8	323
183	Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. Journal of Power Sources, 2012, 202, 253-261.	7.8	142
184	Conductive graphene-based macroscopic membrane self-assembled at a liquid–air interface. Journal of Materials Chemistry, 2011, 21, 3359.	6.7	46