Stefano Sforza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/267509/publications.pdf

Version: 2024-02-01

200 papers

6,901 citations

44 h-index

57758

70 g-index

203 all docs 203 docs citations

203 times ranked 7616 citing authors

#	Article	IF	CITATIONS
1	<i>In vitro</i> simulated semi-dynamic gastrointestinal digestion: evaluation of the effects of processing on whey proteins digestibility and allergenicity. Food and Function, 2022, 13, 1593-1602.	4.6	4
2	Structural and chemical changes induced by temperature and pH hinder the digestibility of whey proteins. Food Chemistry, 2022, 387, 132884.	8.2	8
3	Dynamic changes in molecular composition of black soldier fly prepupae and derived biomasses with microbial fermentation. Food Chemistry: X, 2022, 14, 100327.	4.3	3
4	Assessing food authenticity through protein and metabolic markers. Advances in Food and Nutrition Research, 2022, , .	3.0	0
5	Effect of Parmigiano Reggiano Consumption on Blood Pressure of Spontaneous Hypertensive Rats. Dairy, 2022, 3, 364-376.	2.0	1
6	Molecular composition of lipid and protein fraction of almond, beef and lesser mealworm after in vitro simulated gastrointestinal digestion and correlation with the hormone-stimulating properties of the digesta. Food Research International, 2022, 158, 111499.	6.2	8
7	The effect of pre-slaughter starvation on muscle protein degradation in sea bream (Sparus aurata): formation of ACE inhibitory peptides and increased digestibility of fillet. European Food Research and Technology, 2021, 247, 259-271.	3.3	0
8	Reduction in the Brining Time in Parmigiano Reggiano Cheese Production Minimally Affects Proteolysis, with No Effect on Sensory Properties. Foods, 2021, 10, 770.	4.3	3
9	Bioactivity and peptide profile of whey protein hydrolysates obtained from Colombian double-cream cheese production and their products after gastrointestinal digestion. LWT - Food Science and Technology, 2021, 145, 111334.	5.2	18
10	Effect of the Rearing Substrate on Total Protein and Amino Acid Composition in Black Soldier Fly. Foods, 2021, 10, 1773.	4.3	36
11	Targeting the Nutritional Value of Proteins From Legumes By-Products Through Mild Extraction Technologies. Frontiers in Nutrition, 2021, 8, 695793.	3.7	24
12	Bioconversion of agri-food waste and by-products through insects: a new valorization opportunity. , 2021, , 809-828.		5
13	Extraction and Chemical Characterization of Functional Phenols and Proteins from Coffee (Coffea) Tj ETQq1 1 0.	.784314 rg	gBT/Overlo <mark>ck</mark>
14	Assessment of Enzymatic Improvers in Flours Using LC–MS/MS Detection of Marker Tryptic Peptides. Journal of the American Society for Mass Spectrometry, 2020, 31, 240-248.	2.8	11
15	The Interrelationship Between Microbiota and Peptides During Ripening as a Driver for Parmigiano Reggiano Cheese Quality. Frontiers in Microbiology, 2020, 11, 581658.	3.5	25
16	Antimicrobial Biomasses from Lactic Acid Fermentation of Black Soldier Fly Prepupae and Related By-Products. Microorganisms, 2020, 8, 1785.	3.6	13
17	The Diverse Potential of Gluten from Different Durum Wheat Varieties in Triggering Celiac Disease: A Multilevel In Vitro, Ex Vivo and In Vivo Approach. Nutrients, 2020, 12, 3566.	4.1	0
18	Characterization of Celiac Disease-Related Epitopes and Gluten Fractions, and Identification of Associated Loci in Durum Wheat. Agronomy, 2020, 10, 1231.	3.0	6

#	Article	IF	CITATIONS
19	Influence of environmental and genetic factors on content of toxic and immunogenic wheat gluten peptides. European Journal of Agronomy, 2020, 118, 126091.	4.1	10
20	Modifications induced by controlled storage conditions on whey protein concentrates: Effects on whey protein lactosylation and solubility. International Dairy Journal, 2020, 109, 104765.	3.0	11
21	Thermally-Induced Lactosylation of Whey Proteins: Identification and Synthesis of Lactosylated \hat{l}^2 -lactoglobulin Epitope. Molecules, 2020, 25, 1294.	3.8	15
22	Characterization of Defatted Products Obtained from the Parmigiano–Reggiano Manufacturing Chain: Determination of Peptides and Amino Acids Content and Study of the Digestibility and Bioactive Properties. Foods, 2020, 9, 310.	4.3	6
23	Shotgun proteomics, in-silico evaluation and immunoblotting assays for allergenicity assessment of lesser mealworm, black soldier fly and their protein hydrolysates. Scientific Reports, 2020, 10, 1228.	3.3	33
24	Peptide fingerprinting of Hermetia illucens and Alphitobius diaperinus: Identification of insect species-specific marker peptides for authentication in food and feed. Food Chemistry, 2020, 320, 126681.	8.2	13
25	Degree of Hydrolysis Affects the Techno-Functional Properties of Lesser Mealworm Protein Hydrolysates. Foods, 2020, 9, 381.	4.3	49
26	Influence of the killing method of the black soldier fly on its lipid composition. Food Research International, 2019, 116, 276-282.	6.2	62
27	Killing method affects the browning and the quality of the protein fraction of Black Soldier Fly (Hermetia illucens) prepupae: a metabolomics and proteomic insight. Food Research International, 2019, 115, 116-125.	6.2	61
28	Impact of Naturally Contaminated Substrates on Alphitobius diaperinus and Hermetia illucens: Uptake and Excretion of Mycotoxins. Toxins, 2019, 11, 476.	3.4	26
29	Food wastes from agrifood industry as possible sources of proteins: A detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chemistry, 2019, 286, 567-575.	8.2	69
30	Simulated Gastrointestinal Digestion of Cocoa: Detection of Resistant Peptides and In Silico/In Vitro Prediction of Their Ace Inhibitory Activity. Nutrients, 2019, 11, 985.	4.1	18
31	A Complete Mass Spectrometry (MS)-Based Peptidomic Description of Gluten Peptides Generated During In Vitro Gastrointestinal Digestion of Durum Wheat: Implication for Celiac Disease. Journal of the American Society for Mass Spectrometry, 2019, 30, 1481-1490.	2.8	26
32	UV irradiation as a comparable method to thermal treatment for producing high quality stabilized milk whey. LWT - Food Science and Technology, 2019, 105, 127-134.	5.2	24
33	Technological Quality and Nutritional Value of Two Durum Wheat Varieties Depend on Both Genetic and Environmental Factors. Journal of Agricultural and Food Chemistry, 2019, 67, 2384-2395.	5.2	29
34	Comparison of gluten peptides and potential prebiotic carbohydrates in old and modern Triticum turgidum ssp. genotypes. Food Research International, 2019, 120, 568-576.	6.2	21
35	Identification of target muscle-proteins using Western blotting and high-resolution mass spectrometry as early quality indicators of nutrient supply practices in rainbow trout (Oncorhynchus mykiss). European Food Research and Technology, 2019, 245, 401-410.	3.3	1
36	Species specific marker peptides for meat authenticity assessment: A multispecies quantitative approach applied to Bolognese sauce. Food Control, 2019, 97, 15-24.	5.5	50

3

#	Article	IF	Citations
37	Improving the Lipophilic Antioxidant Activity of Poultry Protein Hydrolisates Through Chemical Esterification. Waste and Biomass Valorization, 2019, 10, 2227-2235.	3.4	1
38	Peptides as probes for food authentication. Peptide Science, 2018, 110, e24068.	1.8	11
39	Current Trends in Ancient Grainsâ€Based Foodstuffs: Insights into Nutritional Aspects and Technological Applications. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 123-136.	11.7	101
40	Pectin oligosaccharides from sugar beet pulp: molecular characterization and potential prebiotic activity. Food and Function, 2018, 9, 1557-1569.	4.6	72
41	Origin and Processing Methods Slightly Affect Allergenic Characteristics of Cashew Nuts (<i>Anacardium occidentale</i>). Journal of Food Science, 2018, 83, 1153-1164.	3.1	5
42	Degradation of Collagen Increases Nitrogen Solubilisation During Enzymatic Hydrolysis of Fleshing Meat. Waste and Biomass Valorization, 2018, 9, 1113-1119.	3.4	23
43	Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chemistry, 2018, 267, 101-110.	8.2	36
44	Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Research International, 2018, 105, 812-820.	6.2	214
45	Gluten peptides drive healthy and celiac monocytes toward an M2-like polarization. Journal of Nutritional Biochemistry, 2018, 54, 11-17.	4.2	17
46	Towards predicting protein hydrolysis by bovine trypsin. Process Biochemistry, 2018, 65, 81-92.	3.7	38
47	Occurrence of non-proteolytic amino acyl derivatives in dry-cured ham. Food Research International, 2018, 114, 38-46.	6.2	18
48	Continuous production of pectic oligosaccharides from sugar beet pulp in a cross flow continuous enzyme membrane reactor. Bioprocess and Biosystems Engineering, 2018, 41, 1717-1729.	3.4	13
49	Tracking celiac disease-triggering peptides and whole wheat flour quality as function of germination kinetics. Food Research International, 2018, 112, 345-352.	6.2	6
50	Insights into a century of breeding of durum wheat in Tunisia: The properties of flours and starches isolated from landraces, old and modern genotypes. LWT - Food Science and Technology, 2018, 97, 743-751.	5.2	18
51	ENZYMATIC HYDROLYSIS AS A WAY TO RECOVERY BOVINE HIDES: LABORATORY AND MEDIUM SCALE TRIALS, CHARACTERIZATION OF THE HYDROLYSATES AND SCALE-UP TO SEMI-INDUSTRIAL SCALE. Detritus, 2018, Volume 05 - March 2019, 1.	0.9	1
52	O-Methylisourea Can React with the \hat{I}_{\pm} -Amino Group of Lysine: Implications for the Analysis of Reactive Lysine. Journal of Agricultural and Food Chemistry, 2017, 65, 964-972.	5.2	3
53	Effect of Maillard induced glycation on protein hydrolysis by lysine/arginine and non-lysine/arginine specific proteases. Food Hydrocolloids, 2017, 69, 210-219.	10.7	44
54	Development of a strategy for the total chemical synthesis of an allergenic protein: the peach LTP Pru p 3. Journal of Peptide Science, 2017, 23, 282-293.	1.4	5

#	Article	IF	CITATIONS
55	Mass spectrometry quantification of beef and pork meat in highly processed food: Application on Bolognese sauce. Food Control, 2017, 74, 61-69.	5.5	39
56	Understanding the Effects of Genotype, Growing Year, and Breeding on Tunisian Durum Wheat Allergenicity. 2. The Celiac Disease Case. Journal of Agricultural and Food Chemistry, 2017, 65, 5837-5846.	5.2	15
57	Phlorotannin Composition of <i>Laminaria digitata </i> . Phytochemical Analysis, 2017, 28, 487-495.	2.4	41
58	Characterization of the peptide fraction from digested Parmigiano Reggiano cheese and its effect on growth of lactobacilli and bifidobacteria. International Journal of Food Microbiology, 2017, 255, 32-41.	4.7	46
59	Peptides from gluten digestion: A comparison between old and modern wheat varieties. Food Research International, 2017, 91, 92-102.	6.2	68
60	Enzymatic pectic oligosaccharides (POS) production from sugar beet pulp using response surface methodology. Journal of Food Science and Technology, 2017, 54, 3707-3715.	2.8	28
61	Effectiveness of Germination on Protein Hydrolysis as a Way To Reduce Adverse Reactions to Wheat. Journal of Agricultural and Food Chemistry, 2017, 65, 9854-9860.	5.2	15
62	Towards environmentally friendly skin unhairing process: A comparison between enzymatic and oxidative methods and analysis of the protein fraction of the related wastewaters. Journal of Cleaner Production, 2017, 164, 1446-1454.	9.3	24
63	How Looking for Celiacâ€Safe Wheat Can Influence Its Technological Properties. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 797-807.	11.7	17
64	Understanding the Effects of Genotype, Growing Year, and Breeding on Tunisian Durum Wheat Allergenicity. 1. The Baker's Asthma Case. Journal of Agricultural and Food Chemistry, 2017, 65, 5831-5836.	5.2	7
65	Demasking kinetics of peptide bond cleavage for whey protein isolate hydrolysed by Bacillus licheniformis protease. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S426-S431.	1.8	9
66	Enzymatic production of pectic oligosaccharides from onion skins. Carbohydrate Polymers, 2016, 146, 245-252.	10.2	44
67	Proteolytic resistance of actin but not of myosin heavy chain during processing of Italian PDO (protected designation of origin) dry-cured hams. European Food Research and Technology, 2016, 242, 881-889.	3.3	9
68	Influence of fermentation level and geographical origin on cocoa bean oligopeptide pattern. Food Chemistry, 2016, 211, 431-439.	8.2	54
69	Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits. Critical Reviews in Biotechnology, 2016, 36, 594-606.	9.0	121
70	Purification and Characterization of <i>Anacardium occidentale</i> (Cashew) Allergens Ana o 1, Ana o 2, and Ana o 3. Journal of Agricultural and Food Chemistry, 2016, 64, 1191-1201.	5.2	26
71	Effect of Extraction Conditions on the Saccharide (Neutral and Acidic) Composition of the Crude Pectic Extract from Various Agro-Industrial Residues. Journal of Agricultural and Food Chemistry, 2016, 64, 268-276.	5.2	28
72	The Strategy for Screening of Antioxidant Constituents in Protein Hydrolysates. Food Engineering Series, 2016, , 145-160.	0.7	2

#	Article	IF	Citations
73	Pectin content and composition from different food waste streams. Food Chemistry, 2016, 201, 37-45.	8.2	200
74	Biocatalytic conversion of poultry processing leftovers: Optimization of hydrolytic conditions and peptide hydrolysate characterization. Food Chemistry, 2016, 197, 611-621.	8.2	20
75	Determination of the influence of the pH of hydrolysis on enzyme selectivity of Bacillus licheniformis protease towards whey protein isolate. International Dairy Journal, 2015, 44, 44-53.	3.0	26
76	Spontaneous, non-enzymatic breakdown of peptides during enzymatic protein hydrolysis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 987-994.	2.3	12
77	Isolation and full characterization of a potentially allergenic lipid transfer protein (LTP) protein in almond. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 150206121628002.	2.3	6
78	Polar Lipid Profile of <i>Nannochloropsis oculata</i> Determined Using a Variety of Lipid Extraction Procedures. Journal of Agricultural and Food Chemistry, 2015, 63, 3931-3941.	5.2	27
79	Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnology for Biofuels, 2015, 8, 101.	6.2	187
80	Peroxidase induced oligo-tyrosine cross-links during polymerization of \hat{l}_{\pm} -lactalbumin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1898-1905.	2.3	16
81	Effect of dry-cured ham maturation time on simulated gastrointestinal digestion: Characterization of the released peptide fraction. Food Research International, 2015, 67, 136-144.	6.2	32
82	Electrospray MS and MALDI imaging show that nonâ€specific lipidâ€transfer proteins (LTPs) in tomato are present as several isoforms and are concentrated in seeds. Journal of Mass Spectrometry, 2014, 49, 1264-1271.	1.6	28
83	Enzymatic production and degradation of cheese-derived non-proteolytic aminoacyl derivatives. Amino Acids, 2014, 46, 441-447.	2.7	15
84	Genetic and environmental factors affecting pathogenicity of wheat as related to celiac disease. Journal of Cereal Science, 2014, 59, 62-69.	3.7	14
85	Extraction, identification and semi-quantification of oligopeptides in cocoa beans. Food Research International, 2014, 63, 382-389.	6.2	39
86	A UPLC/ESI–MS method for identifying wool, cashmere and yak fibres. Textile Reseach Journal, 2014, 84, 953-958.	2.2	20
87	Antimicrobial activity of poultry bone and meat trimmings hydrolyzates in low-sodium turkey food. Food and Function, 2014, 5, 220-228.	4.6	8
88	Determination of the Influence of Substrate Concentration on Enzyme Selectivity Using Whey Protein Isolate and <i>Bacillus licheniformis</i> Protease. Journal of Agricultural and Food Chemistry, 2014, 62, 10230-10239.	5.2	18
89	Simple and Validated Quantitative ¹ H NMR Method for the Determination of Methylation, Acetylation, and Feruloylation Degree of Pectin. Journal of Agricultural and Food Chemistry, 2014, 62, 9081-9087.	5. 2	74
90	Introducing enzyme selectivity: a quantitative parameter to describe enzymatic protein hydrolysis. Analytical and Bioanalytical Chemistry, 2014, 406, 5827-5841.	3.7	42

#	Article	IF	Citations
91	Qualitative and quantitative determination of peptides related to celiac disease in mixtures derived from different methods of simulated gastrointestinal digestion of wheat products. Analytical and Bioanalytical Chemistry, 2014, 406, 4765-4775.	3.7	33
92	Identifying changes in chemical, interfacial and foam properties of β-lactoglobulin–sodium dodecyl sulphate mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 34-44.	4.7	21
93	Chiral PNAs with Constrained Open-Chain Backbones. Methods in Molecular Biology, 2014, 1050, 19-35.	0.9	2
94	Use of Peptide Nucleic Acids (PNAs) for Genotyping by Solution and Surface Methods. Methods in Molecular Biology, 2014, 1050, 143-157.	0.9	2
95	Variability of lactic acid production, chemical and microbiological characteristics in 24-hour Parmigiano Reggiano cheese. Dairy Science and Technology, 2013, 93, 605-621.	2.2	16
96	Analysis of phytosteryl and phytostanyl fatty acid esters in enriched dairy foods: a combination of acid digestion, lipid extraction, and on-line LC-GC. European Food Research and Technology, 2013, 236, 999-1007.	3.3	7
97	PNA–NLS conjugates as single-molecular activators of target sites in double-stranded DNA for site-selective scission. Organic and Biomolecular Chemistry, 2013, 11, 5233.	2.8	13
98	LC/MS analysis of proteolytic peptides in wheat extracts for determining the content of the allergen amylase/trypsin inhibitor CM3: Influence of growing area and variety. Food Chemistry, 2013, 140, 141-146.	8. 2	39
99	The antibrowning agent sulfite inactivates <i>AgaricusÂbisporus</i> tyrosinase through covalent modification of the copperâ€B site. FEBS Journal, 2013, 280, 6184-6195.	4.7	27
100	Growth promotion of <i><scp>B</scp>ifidobacterium</i> and <i><scp>L</scp>actobacillus</i> species by proteinaceous hydrolysates derived from poultry processing leftovers. International Journal of Food Science and Technology, 2013, 48, 341-349.	2.7	22
101	Cheeses. Comprehensive Analytical Chemistry, 2013, , 479-509.	1.3	1
102	Microbial origin of non proteolytic aminoacyl derivatives in long ripened cheeses. Food Microbiology, 2013, 35, 116-120.	4.2	29
103	Antioxidant capacity of water soluble extracts from Parmigiano-Reggiano cheese. International Journal of Food Sciences and Nutrition, 2013, 64, 953-958.	2.8	34
104	Identification and quantification of different species in animal fibres by LC/ESIâ€MS analysis of keratinâ€derived proteolytic peptides. Journal of Mass Spectrometry, 2013, 48, 919-926.	1.6	17
105	PNA bearing 5-azidomethyluracil. Artificial DNA, PNA & XNA, 2012, 3, 53-62.	1.4	14
106	Letter from the Editors. Artificial DNA, PNA & XNA, 2012, 3, 29-30.	1.4	0
107	Cheese peptidomics: A detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. Journal of Dairy Science, 2012, 95, 3514-3526.	3.4	81
108	Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays. Artificial DNA, PNA & XNA, 2012, 3, 63-72.	1.4	20

#	Article	IF	CITATIONS
109	Isoform identification, recombinant production and characterization of the allergen lipid transfer protein 1 from pear (Pyr c 3). Gene, 2012, 491, 173-181.	2.2	10
110	LC/ESIâ€MS/MS analysis outlines the different fumonisin patterns produced by <i>F. verticillioides</i> in culture media and in maize kernels. Journal of Mass Spectrometry, 2012, 47, 1170-1176.	1.6	16
111	Simulated gastrointestinal digestion of Pru ar 3 apricot allergen: Assessment of allergen resistance and characterization of the peptides by ultraâ€performance liquid chromatography/electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2012, 26, 2905-2912.	1.5	10
112	Applications of liquid chromatography–mass spectrometry for food analysis. Journal of Chromatography A, 2012, 1259, 74-85.	3.7	172
113	Composition of peptide mixtures derived from simulated gastrointestinal digestion of prolamins from different wheat varieties. Journal of Cereal Science, 2012, 56, 223-231.	3.7	19
114	Tolerability of a Fully Maturated Cheese in Cow's Milk Allergic Children: Biochemical, Immunochemical, and Clinical Aspects. PLoS ONE, 2012, 7, e40945.	2.5	39
115	Cellular Uptakes, Biostabilities and Antiâ€miRâ€210 Activities of Chiral Arginineâ€PNAs in Leukaemic K562 Cells. ChemBioChem, 2012, 13, 1327-1337.	2.6	56
116	Preliminary investigation on the presence of peptides inhibiting the growth of Listeria innocua and Listeria monocytogenes in Asiago d'Allevo cheese. Dairy Science and Technology, 2012, 92, 297-308.	2.2	13
117	Common wheat determination in durum wheat samples through LC/MS analysis of gluten peptides. Analytical and Bioanalytical Chemistry, 2012, 403, 2909-2914.	3.7	23
118	Assessing allergenicity of different tomato ecotypes by using pooled sera of allergic subjects: identification of the main allergens. European Food Research and Technology, 2012, 234, 405-414.	3.3	8
119	miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics, 2011, 3, 733-745.	2.1	39
120	Real time RNA transcription monitoring by Thiazole Orange (TO)-conjugated Peptide Nucleic Acid (PNA) probes: norovirus detection. Molecular BioSystems, 2011, 7, 1684.	2.9	17
121	Patterning of Peptide Nucleic Acids Using Reactive Microcontact Printing. Langmuir, 2011, 27, 1536-1542.	3 . 5	26
122	A PNA microarray for tomato genotyping. Molecular BioSystems, 2011, 7, 1902.	2.9	12
123	Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chemical Society Reviews, 2011, 40, 221-232.	38.1	58
124	Control of Helical Handedness in DNA and PNA Nanostructures. Methods in Molecular Biology, 2011, 749, 79-92.	0.9	4
125	Peptide Nucleic Acids with a Structurally Biased Backbone. Updated Review and Emerging Challenges. Current Topics in Medicinal Chemistry, $2011, 11, 1535-1554$.	2.1	72
126	Proteolytic Peptides as Molecular Markers of Species' Authenticity in Cheeses. ACS Symposium Series, 2011, , 215-226.	0.5	1

#	Article	IF	Citations
127	Modulation of the Biological Activity of microRNAâ€210 with Peptide Nucleic Acids (PNAs). ChemMedChem, 2011, 6, 2192-2202.	3.2	72
128	DNA and RNA binding properties of an arginine-based †Extended Chiral Box†Peptide Nucleic Acid. Tetrahedron Letters, 2011, 52, 300-304.	1.4	13
129	Vaccination of Lactating Dairy Cows for the Prevention of Aflatoxin B1 Carry Over in Milk. PLoS ONE, 2011, 6, e26777.	2.5	21
130	Evaluation of Alternate Isotope-Coded Derivatization Assay (AIDA) in the LC–MS/MS analysis of aldehydes in exhaled breath condensate. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2616-2622.	2.3	29
131	A Peptide Nucleic Acid Embedding a Pseudopeptide Nuclear Localization Sequence in the Backbone Behaves as a Peptide Mimic. European Journal of Organic Chemistry, 2010, 2010, 2441-2444.	2.4	22
132	Affinity and selectivity of C2―and C5â€substituted "chiralâ€box―PNA in solution and on microarrays. Chirality, 2010, 22, E161-72.	2.6	24
133	<i>In vitro</i> gastrointestinal digestion of the major peach allergen Pru p 3, a lipid transfer protein: Molecular characterization of the products and assessment of their $\log B$ binding abilities. Molecular Nutrition and Food Research, 2010, 54, 1452-1457.	3.3	35
134	A pyrenyl-PNA probe for DNA and RNA recognition. Artificial DNA, PNA & XNA, 2010, 1, 83-89.	1.4	16
135	Angiotensin-converting enzyme inhibitory activity of water-soluble extracts of Asiago d'allevo cheese. International Dairy Journal, 2010, 20, 11-17.	3.0	45
136	Highly selective single nucleotide polymorphism recogniton by a chiral (5S) PNA beacon. Chirality, 2009, 21, 245-253.	2.6	19
137	SSBâ€Assisted Duplex Invasion of Preorganized PNA into Doubleâ€Stranded DNA. ChemBioChem, 2009, 10, 2607-2612.	2.6	19
138	Unambiguous characterization and tissue localization of Pru P 3 peach allergen by electrospray mass spectrometry and MALDI imaging. Journal of Mass Spectrometry, 2009, 44, 891-897.	1.6	51
139	Free and bound fumonisins in glutenâ€free food products. Molecular Nutrition and Food Research, 2009, 53, 492-499.	3.3	70
140	A multiresidual method for the simultaneous determination of the main glycoalkaloids and flavonoids in fresh and processed tomato (Solanum lycopersicum L.) by LCâ€DADâ€MS/MS. Journal of Separation Science, 2009, 32, 3664-3671.	2.5	10
141	Accumulation of non-proteolytic aminoacyl derivatives in Parmigiano-Reggiano cheese during ripening. International Dairy Journal, 2009, 19, 582-587.	3.0	46
142	Masked Mycotoxins and Mycotoxin Derivatives in Food: The Hidden Menace., 2009,, 385-397.		0
143	Arginine-based PNA microarrays for APOE genotyping. Molecular BioSystems, 2009, 5, 1323.	2.9	25
144	New Uracil Dimers Showing Erythroid Differentiation Inducing Activities. Journal of Medicinal Chemistry, 2009, 52, 87-94.	6.4	10

#	Article	IF	Citations
145	A Fmoc-based submonomeric strategy for the solid phase synthesis of optically pure chiral PNAs. Tetrahedron Letters, 2008, 49, 4958-4961.	1.4	9
146	Circular dichroism study of DNA binding by a potential anticancer peptide nucleic acid targeted against the <i>MYCN</i> oncogene. Chirality, 2008, 20, 494-500.	2.6	20
147	A new integrated membrane process for the production of concentrated blood orange juice: Effect on bioactive compounds and antioxidant activity. Food Chemistry, 2008, 106, 1021-1030.	8.2	113
148	Proteolytic oligopeptides as molecular markers for the presence of cows' milk in fresh cheeses derived from sheep milk. International Dairy Journal, 2008, 18, 1072-1076.	3.0	21
149	Label-free selective DNA detection with high mismatch recognition by PNA beacons and ion exchange HPLC. Organic and Biomolecular Chemistry, 2008, 6, 1232.	2.8	15
150	Chiral introduction of positive charges to PNA for double-duplex invasion to versatile sequences. Nucleic Acids Research, 2008, 36, 1464-1471.	14.5	80
151	Peptide Nucleic Acids with a Structurally Biased Backbone: Effects of Conformational Constraints and Stereochemistry. Current Topics in Medicinal Chemistry, 2007, 7, 681-694.	2.1	41
152	A new concept in double duplex DNA invasion by chiral PNAs which simultaneously depress PNA-PNA and improve PNA-DNA duplex stability Nucleic Acids Symposium Series, 2007, 51, 19-20.	0.3	0
153	Identification of PCR-Amplified Genetically Modified Organisms (GMOs) DNA by Peptide Nucleic Acid (PNA) Probes in Anion-Exchange Chromatographic Analysis. Journal of Agricultural and Food Chemistry, 2007, 55, 2509-2516.	5.2	14
154	Effect of ionic strength on PNA-DNA hybridization on surfaces and in solution. Biointerphases, 2007, 2, 80-88.	1.6	40
155	Isolation and Identification of Two Lipid Transfer Proteins in Pomegranate (Punica granatum). Journal of Agricultural and Food Chemistry, 2007, 55, 11057-11062.	5.2	20
156	Chirality as a tool in nucleic acid recognition: Principles and relevance in biotechnology and in medicinal chemistry. Chirality, 2007, 19, 269-294.	2.6	127
157	Induction of Helical Handedness and DNA Binding Properties of Peptide Nucleic Acids (PNAs) with Two Stereogenic Centres. European Journal of Organic Chemistry, 2007, 2007, 5879-5885.	2.4	64
158	Fast and easy colorimetric tests for single mismatch recognition by PNA–DNA duplexes with the diethylthiadicarbocyanine dye and succinyl-β-cyclodextrin. Journal of Proteomics, 2007, 70, 735-741.	2.4	10
159	Kinetic and affinity analyses of hybridization reactions between peptide nucleic acid probes and DNA targets using surface plasmon field-enhanced fluorescence spectroscopy. Biointerphases, 2006, 1, 113-122.	1.6	25
160	Effect of Extended Aging of Parma Dry-Cured Ham on the Content of Oligopeptides and Free Amino Acids. Journal of Agricultural and Food Chemistry, 2006, 54, 9422-9429.	5.2	71
161	Recent advances in mycotoxin determination in food and feed by hyphenated chromatographic techniques/mass spectrometry. Mass Spectrometry Reviews, 2006, 25, 54-76.	5.4	186
162	Highly efficient strand invasion by peptide nucleic acid bearing optically pure lysine residues in its backbone. Nucleic Acids Symposium Series, 2006, 50, 109-110.	0.3	7

#	Article	IF	Citations
163	Synthesis of new chiral PNAs bearing a dipeptide-mimic monomer with two lysine-derived stereogenic centres. Tetrahedron Letters, 2005, 46, 8395-8399.	1.4	59
164	Alternate Isotope-Coded Derivatization Assay: An Isotope Dilution Method Applied to the Quantification of Zearalenone in Maize Flour. Angewandte Chemie - International Edition, 2005, 44, 5126-5130.	13.8	12
165	Detection of the R553X DNA single point mutation related to cystic fibrosis by a "chiral boxâ€D-lysine-peptide nucleic acid probe by capillary electrophoresis. Electrophoresis, 2005, 26, 4310-4316.	2.4	28
166	Bioavailability oftrans-resveratrol from red wine in humans. Molecular Nutrition and Food Research, 2005, 49, 495-504.	3.3	268
167	Lysine-based peptide nucleic acids (PNAs) with strong chiral constraint: Control of helix handedness and DNA binding by chirality. Chirality, 2005, 17, S196-S204.	2.6	39
168	Unconventional method based on circular dichroism to detect peanut DNA in food by means of a PNA probe and a cyanine dye. Chirality, 2005, 17, 515-521.	2.6	24
169	Polymerase chain reaction coupled with peptide nucleic acid high-performance liquid chromatography for the sensitive detection of traces of potentially allergenic hazelnut in foodstuffs. European Food Research and Technology, 2005, 220, 619-624.	3.3	26
170	An innovative LC/MS approach applied to the determination of zeralenone in maize: Alternate Isotope-coded Derivatization Assay (AIDA). Mycotoxin Research, 2005, 21, 218-223.	2.3	4
171	Anti-gene peptide nucleic acid specifically inhibits MYCN expression in human neuroblastoma cells leading to cell growth inhibition and apoptosis. Molecular Cancer Therapeutics, 2005, 4, 779-786.	4.1	86
172	Fast parallel enantiomeric analysis of unmodified amino acids by sensing with fluorescent \hat{l}^2 -cyclodextrins. Journal of Materials Chemistry, 2005, 15, 2741.	6.7	50
173	Targeted inhibition of NMYC by peptide nucleic acid in N-myc amplified human neuroblastoma cells: cell-cycle inhibition with induction of neuronal cell differentiation and apoptosis. International Journal of Oncology, 2004, 24, 265.	3.3	9
174	Enhanced recognition of cystic fibrosis W1282X DNA point mutation by chiral peptide nucleic acid probes by a surface plasmon resonance biosensor. Journal of Molecular Recognition, 2004, 17, 76-84.	2.1	59
175	Determination of fatty acid positions in native lipid A by positive and negative electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 378-383.	1.6	51
176	Enantioselective Fluorescence Sensing of Amino Acids by Modified Cyclodextrins: Role of the Cavity and Sensing Mechanism. Chemistry - A European Journal, 2004, 10, 2749-2758.	3.3	121
177	Study of the Oligopeptide Fraction in Grana Padano and Parmigiano-Reggiano Cheeses by Liquid Chromatography-Electrospray Ionisation Mass Spectrometry. European Journal of Mass Spectrometry, 2004, 10, 421-427.	1.0	25
178	Fast, Solid-Phase Synthesis of Chiral Peptide Nucleic Acids with a High Optical Purity by a Submonomeric Strategy. European Journal of Organic Chemistry, 2003, 2003, 1056-1063.	2.4	34
179	Enantiomeric separation of chiral peptide nucleic acid monomers by capillary electrophoresis with charged cyclodextrins. Electrophoresis, 2003, 24, 2698-2703.	2.4	6
180	ESI-mass spectrometry analysis of unsubstituted and disubstituted \hat{l}^2 -cyclodextrins: fragmentation mode and identification of the AB, AC, AD regioisomers. Journal of the American Society for Mass Spectrometry, 2003, 14, 124-135.	2.8	23

#	Article	IF	CITATIONS
181	Extraction, Semi-Quantification, and Fast On-line Identification of Oligopeptides in Grana Padano Cheese by HPLCâ ⁻² MS. Journal of Agricultural and Food Chemistry, 2003, 51, 2130-2135.	5.2	49
182	Identification and significance of the N-terminal part of swine pyruvate kinase in aged Parma hams. Meat Science, 2003, 63, 57-61.	5.5	27
183	Direction control in DNA binding of chiral d-lysine-based peptide nucleic acid (PNA) probed by electrospray mass spectrometry. Chemical Communications, 2003, , 1102-1103.	4.1	22
184	Insights into peptide nucleic acid (PNA) structural features: The crystal structure of a D-lysine-based chiral PNA-DNA duplex. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12021-12026.	7.1	143
185	Role of chirality and optical purity in nucleic acid recognition by PNA and PNA analogs. Chirality, 2002, 14, 591-598.	2.6	37
186	Crystallization and preliminary X-ray diffraction studies of aD-lysine-based chiral PNA–DNA duplex. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 553-555.	2.5	6
187	Epimerization of peptide nucleic acids analogs during solid-phase synthesis: optimization of the coupling conditions for increasing the optical purity. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2690-2696.	1.3	17
188	Recognition and strand displacement of DNA oligonucleotides by peptide nucleic acids (PNAs). Journal of Chromatography A, 2001, 922, 177-185.	3.7	28
189	Oligopeptides and free amino acids in Parma hams of known cathepsin B activity. Food Chemistry, 2001, 75, 267-273.	8.2	74
190	Peptide Nucleic Acids and Biosensor Technology for Real-Time Detection of the Cystic Fibrosis W1282X Mutation by Surface Plasmon Resonance. Laboratory Investigation, 2001, 81, 1415-1427.	3.7	50
191	Inhibition of RNA Polymerase III Elongation by a T10 Peptide Nucleic Acid. Journal of Biological Chemistry, 2001, 276, 5720-5725.	3.4	16
192	DNA Binding of AD-Lysine-Based Chiral PNA: Direction Control and Mismatch Recognition. European Journal of Organic Chemistry, 2000, 2000, 2905-2913.	2.4	83
193	Enantioselective sensing of amino acids by copper(II) complexes of phenylalanine-based fluorescent \hat{l}^2 -cyclodextrins. Tetrahedron Letters, 2000, 41, 3691-3695.	1.4	61
194	Dry sausages ripening: influence of thermohygrometric conditions on microbiological, chemical and physico-chemical characteristics. Food Research International, 2000, 33, 161-170.	6.2	39
195	Direct enantiomeric separation of N-aminoethylamino acids: determination of the enantiomeric excess of chiral peptide nucleic acids (PNAs) by GC. Tetrahedron: Asymmetry, 1999, 10, 2063-2066.	1.8	29
196	Chiral Peptide Nucleic Acids (PNAs): Helix Handedness and DNA Recognition. European Journal of Organic Chemistry, 1999, 1999, 197-204.	2.4	88
197	Tf2OAmide adducts: Versatile reagents for the synthesis of imidates and amidines. Tetrahedron Letters, 1998, 39, 711-714.	1.4	37
198	Peptide nucleic acids (PNAs) with a functional backbone. Tetrahedron Letters, 1998, 39, 4707-4710.	1.4	91

#	Article	IF	CITATIONS
199	Gene Modulation by Peptide Nucleic Acids (PNAs) Targeting microRNAs (miRs)., 0,,.		4
200	Enantioselective Separation of Amino Acids and Hydroxy Acids by Ligand Exchange with Copper(II) Complexes in HPLC (Chiral Eluent) and in Fast Sensing Systems. , 0, , 301-331.		0