Sabine Hilt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2674891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophytes. , 2022, , 14-25.		3
2	Predator group composition indirectly influences food web dynamics through predator growth rates. American Naturalist, 2022, 199, 330-344.	2.1	3
3	Warming alters juvenile carp effects on macrophytes resulting in a shift to turbid conditions in freshwater mesocosms. Journal of Applied Ecology, 2022, 59, 165-175.	4.0	12
4	Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back. Inland Waters, 2022, 12, 187-204.	2.2	41
5	Evaluating Multiple Stressor Effects on Benthic–Pelagic Freshwater Communities in Systems of Different Complexities: Challenges in Upscaling. Water (Switzerland), 2022, 14, 581.	2.7	3
6	Multiple-stressor exposure of aquatic food webs: Nitrate and warming modulate the effect of pesticides. Water Research, 2022, 216, 118325.	11.3	14
7	Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems. Limnology and Oceanography, 2022, 67, .	3.1	20
8	Warming lowers critical thresholds for multiple stressor–induced shifts between aquatic primary producers. Science of the Total Environment, 2022, 838, 156511.	8.0	12
9	Longâ€ŧerm trends and seasonal variation in host density, temperature, and nutrients differentially affect chytrid fungi parasitising lake phytoplankton. Freshwater Biology, 2022, 67, 1532-1542.	2.4	7
10	Filamentous Algae Blooms in a Large, Clear-Water Lake: Potential Drivers and Reduced Benthic Primary Production. Water (Switzerland), 2022, 14, 2136.	2.7	5
11	Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology, 2021, 66, 1-12.	2.4	123
12	Shallow lakes at risk: Nutrient enrichment enhances topâ€down control of macrophytes by invasive herbivorous snails. Freshwater Biology, 2021, 66, 436-446.	2.4	16
13	Disentangling the direct and indirect effects of agricultural runoff on freshwater ecosystems subject to global warming: A microcosm study. Water Research, 2021, 190, 116713.	11.3	20
14	Biological Invasions: Case Studies. , 2021, , .		0
15	Incomplete recovery of a shallow lake from a natural browning event. Freshwater Biology, 2021, 66, 1089-1100.	2.4	5
16	Blue Waters, Green Bottoms: Benthic Filamentous Algal Blooms Are an Emerging Threat to Clear Lakes Worldwide. BioScience, 2021, 71, 1011-1027.	4.9	42
17	Structural changes of the microplankton community following a pulse of inorganic nitrogen in a eutrophic river. Limnology and Oceanography, 2020, 65, S264.	3.1	5
18	Warming advances virus population dynamics in a temperate freshwater plankton community. Limnology and Oceanography Letters, 2020, 5, 295-304.	3.9	7

#	Article	IF	CITATIONS
19	On the move: New insights on the ecology and management of native and alien macrophytes. Aquatic Botany, 2020, 162, 103190.	1.6	16
20	Feeding Aquatic Ecosystems: Whole-Lake Experimental Addition of Angler's Ground Bait Strongly Affects Omnivorous Fish Despite Low Contribution to Lake Carbon Budget. Ecosystems, 2019, 22, 346-362.	3.4	17
21	Mutual Facilitation Among Invading Nuttall's Waterweed and Quagga Mussels. Frontiers in Plant Science, 2019, 10, 789.	3.6	16
22	Phosphorus Availability and Growth of Benthic Primary Producers in Littoral Lake Sediments: Are Differences Linked to Induced Bank Filtration?. Water (Switzerland), 2019, 11, 1111.	2.7	2
23	The effect of a shift from macrophyte to phytoplankton dominance on phosphorus forms and burial in the sediments of a shallow hard-water lake. Biogeochemistry, 2019, 143, 371-385.	3.5	13
24	Littoral Slope, Water Depth and Alternative Response Strategies to Light Attenuation Shape the Distribution of Submerged Macrophytes in a Mesotrophic Lake. Frontiers in Plant Science, 2019, 10, 169.	3.6	42
25	Modelling induced bank filtration effects on freshwater ecosystems to ensure sustainable drinking water production. Water Research, 2019, 157, 19-29.	11.3	10
26	Groundwater discharge gives periphyton a competitive advantage over macrophytes. Aquatic Botany, 2019, 154, 72-80.	1.6	10
27	Combined effects of shading and clipping on the invasive alien macrophyte Elodea nuttallii. Aquatic Botany, 2019, 154, 24-27.	1.6	11
28	Changes in submerged macrophyte colonization in shallow areas of an oligo-mesotrophic lake and the potential role of groundwater. Limnologica, 2018, 68, 168-176.	1.5	7
29	Primary production in nutrient-rich kettle holes and consequences for nutrient and carbon cycling. Hydrobiologia, 2018, 806, 77-93.	2.0	30
30	Potential Impacts of Induced Bank Filtration on Surface Water Quality: A Conceptual Framework for Future Research. Water (Switzerland), 2018, 10, 1240.	2.7	24
31	Impact of trematode infections on periphyton grazing rates of freshwater snails. Parasitology Research, 2018, 117, 3547-3555.	1.6	9
32	Empirical correspondence between trophic transfer efficiency in freshwater food webs and the slope of their size spectra. Ecology, 2018, 99, 1463-1472.	3.2	31
33	Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes. Frontiers in Plant Science, 2018, 9, 194.	3.6	97
34	Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyteâ€dominated systems with zero net effect on carbon burial. Global Change Biology, 2018, 24, 5231-5242.	9.5	43
35	Warming advances top $\hat{a} \in \mathbf{d}$ own control and reduces producer biomass in a freshwater plankton community. Ecosphere, 2017, 8, e01651.	2.2	63
36	Convective mixing and high littoral production established systematic errors in the diel oxygen curves of a shallow, eutrophic lake. Limnology and Oceanography: Methods, 2017, 15, 429-435.	2.0	23

#	Article	IF	CITATIONS
37	DNA metabarcoding of unfractionated water samples relates phytoâ€, zoo†and bacterioplankton dynamics and reveals a singleâ€taxon bacterial bloom. Environmental Microbiology Reports, 2017, 9, 383-388.	2.4	13
38	Allelopathic effects of Microcystis aeruginosa on green algae and a diatom: Evidence from exudates addition and co-culturing. Harmful Algae, 2017, 61, 56-62.	4.8	72
39	Biosynthetic hydrogen isotopic fractionation factors during lipid synthesis in submerged aquatic macrophytes: Effect of groundwater discharge and salinity. Organic Geochemistry, 2017, 113, 10-16.	1.8	31
40	Boomâ€bust dynamics in biological invasions: towards an improved application of the concept. Ecology Letters, 2017, 20, 1337-1350.	6.4	143
41	Benthic carbon is inefficiently transferred in the food webs of two eutrophic shallow lakes. Freshwater Biology, 2017, 62, 1693-1706.	2.4	22
42	Cross continental increase in methane ebullition under climate change. Nature Communications, 2017, 8, 1682.	12.8	146
43	Stimulation of epiphyton growth by lacustrine groundwater discharge to an oligo-mesotrophic hard-water lake. Freshwater Science, 2017, 36, 555-570.	1.8	12
44	Translating Regime Shifts in Shallow Lakes into Changes in Ecosystem Functions and Services. BioScience, 2017, 67, 928-936.	4.9	144
45	Assessing the Utility of Hydrogen, Carbon and Nitrogen Stable Isotopes in Estimating Consumer Allochthony in Two Shallow Eutrophic Lakes. PLoS ONE, 2016, 11, e0155562.	2.5	8
46	Synergy between shading and herbivory triggers macrophyte loss and regime shifts in aquatic systems. Oikos, 2016, 125, 1489-1495.	2.7	52
47	The importance of landscape diversity for carbon fluxes at the landscape level: smallâ€scale heterogeneity matters. Wiley Interdisciplinary Reviews: Water, 2016, 3, 601-617.	6.5	32
48	Herbivory on freshwater and marine macrophytes: A review and perspective. Aquatic Botany, 2016, 135, 18-36.	1.6	193
49	Biological indicators track differential responses of pelagic and littoral areas to nutrient load reductions in German lakes. Ecological Indicators, 2016, 61, 905-910.	6.3	24
50	Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquatic Ecology, 2016, 50, 485-498.	1.5	72
51	Large biomass of small feeders: ciliates may dominate herbivory in eutrophic lakes. Journal of Plankton Research, 2016, 38, 2-15.	1.8	31
52	Experimental comparison of periphyton removal by chironomid larvae and Daphnia magna. Inland Waters, 2015, 5, 81-88.	2.2	9
53	Effects of water temperature on summer periphyton biomass in shallow lakes: a pan-European mesocosm experiment. Aquatic Sciences, 2015, 77, 499-510.	1.5	34
54	Effects of Light and Autochthonous Carbon Additions on Microbial Turnover of Allochthonous Organic Carbon and Community Composition. Microbial Ecology, 2015, 69, 361-371.	2.8	17

#	Article	IF	CITATIONS
55	Recovery limitation of endangered Ottelia acuminata by allelopathic interaction with cyanobacteria. Aquatic Ecology, 2015, 49, 333-342.	1.5	13
56	Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality. Environmental Modelling and Software, 2014, 61, 410-423.	4.5	45
57	Enhanced Input of Terrestrial Particulate Organic Matter Reduces the Resilience of the Clear-Water State of Shallow Lakes: A Model Study. Ecosystems, 2014, 17, 616-626.	3.4	17
58	Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia, 2014, 737, 99-110.	2.0	100
59	A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake. Ecosphere, 2013, 4, 1-17.	2.2	68
60	Clear, crashing, turbid and back – longâ€ŧerm changes in macrophyte assemblages in a shallow lake. Freshwater Biology, 2013, 58, 2027-2036.	2.4	62
61	Flow cytometry as a diagnostic tool for the effects of polyphenolic allelochemicals on phytoplankton. Aquatic Botany, 2013, 104, 5-14.	1.6	19
62	Cyanobacteria can allelopathically inhibit submerged macrophytes: Effects of Microcystis aeruginosa extracts and exudates on Potamogeton malaianus. Aquatic Botany, 2013, 109, 1-7.	1.6	54
63	Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community. FEMS Microbiology Ecology, 2013, 83, 650-663.	2.7	68
64	Ecosystemâ€level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats. Ecology, 2013, 94, 2754-2766.	3.2	48
65	Sensitivity of the Green Alga Pediastrum duplex Meyen to Allelochemicals Is Strain-Specific and Not Related to Co-Occurrence with Allelopathic Macrophytes. PLoS ONE, 2013, 8, e78463.	2.5	20
66	Do macrophytes support harmful cyanobacteria? Interactions with a green alga reverse the inhibiting effects of macrophyte allelochemicals on Microcystis aeruginosa. Harmful Algae, 2012, 19, 76-84.	4.8	61
67	COMPARISON OF METHODS TO DETECT ALLELOPATHIC EFFECTS OF SUBMERGED MACROPHYTES ON GREEN ALGAE ¹ . Journal of Phycology, 2012, 48, 40-44.	2.3	15
68	TRANSFORMATION AND ALLELOPATHY OF NATURAL DISSOLVED ORGANIC CARBON AND TANNIC ACID ARE AFFECTED BY SOLAR RADIATION AND BACTERIA ¹ . Journal of Phycology, 2012, 48, 355-364.	2.3	13
69	Abrupt regime shifts in space and time along rivers and connected lake systems. Oikos, 2011, 120, 766-775.	2.7	79
70	Submerged Macrophyte Responses to Reduced Phosphorus Concentrations in Two Periâ€Urban Lakes. Restoration Ecology, 2010, 18, 452-461.	2.9	45
71	Can Submerged Macrophytes Influence Turbidity and Trophic State in Deep Lakes? Suggestions from a Case Study. Journal of Environmental Quality, 2010, 39, 725-733.	2.0	54
72	Regulation of submersed macrophyte biomass in a temperate lowland river: Interactions between shading by bank vegetation, epiphyton and water turbidity. Aquatic Botany, 2010, 92, 129-136.	1.6	69

#	Article	IF	CITATIONS
73	Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes?. Basic and Applied Ecology, 2008, 9, 422-432.	2.7	282
74	Allelopathic inhibition of epiphytes by submerged macrophytes. Aquatic Botany, 2006, 85, 252-256.	1.6	83
75	Restoration of submerged vegetation in shallow eutrophic lakes – A guideline and state of the art in Germany. Limnologica, 2006, 36, 155-171.	1.5	233
76	IN SITU ALLELOPATHIC POTENTIAL OF MYRIOPHYLLUM VERTICILLATUM (HALORAGACEAE) AGAINST SELECTED PHYTOPLANKTON SPECIES 1. Journal of Phycology, 2006, 42, 1189-1198.	2.3	75
77	Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 2005, 50, 1747-1771.	2.4	1,080
78	Trophic Transfer Efficiency in Lakes. Ecosystems, 0, , .	3.4	2