Xing-He Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2674875/publications.pdf

Version: 2024-02-01

126	2,597	27	42
papers	citations	h-index	g-index
126	126	126	2401 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Safety-enhanced Polymer Electrolytes with High Ambient-temperature Lithium-ion Conductivity Based on ABA Triblock Copolymers. Chinese Journal of Polymer Science (English Edition), 2022, 40, 21-28.	3.8	6
2	Facile synthesis and characterization of soluble aramid containing polar hydroxyl side group. Polymer, 2022, 238, 124411.	3.8	5
3	Co-assembled twisted superstructures formed by disc-bent core amphiphiles. Giant, 2022, 9, 100087.	5.1	1
4	Enhancing ionic conductivity in tablet–bottlebrush block copolymer electrolytes with well-aligned nanostructures <i>via</i> solvent vapor annealing. Journal of Materials Chemistry C, 2022, 10, 4247-4256.	5 . 5	4
5	Ordered structure constructed from <i>C</i> ₂ -symmetric hexa- <i>peri</i> -hexabenzocoronene linked with oligo(dimethylsiloxane). Soft Matter, 2022, 18, 3430-3436.	2.7	3
6	Ultra-stretchable ion gels based on physically cross-linked polymer networks. Journal of Materials Chemistry C, 2022, 10, 10926-10934.	5 . 5	4
7	Tailored Polymer Particles with Ordered Network Structures in Emulsion Droplets. Langmuir, 2021, 37, 509-515.	3.5	7
8	Efficient Access to 3D Mesoscopic Prisms in Polymeric Soft Materials. Macromolecular Rapid Communications, 2021, 42, e2100064.	3.9	4
9	Self-Healing Solid Polymer Electrolyte with High Ion Conductivity and Super Stretchability for All-Solid Zinc-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36320-36329.	8.0	42
10	Thickness-Dependent Photo-Aligned Thin-Film Morphologies of a Block Copolymer Containing an Azobenzene-Based Liquid Crystalline Polymer and a Poly(ionic liquid). Langmuir, 2021, 37, 9774-9784.	3 . 5	5
11	Organic Persistent Luminescent Materials: Ultralong Room-Temperature Phosphorescence and Multicolor-Tunable Afterglow. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41131-41139.	8.0	35
12	Sub-5 nm homeotropically aligned columnar structures of hybrids constructed by porphyrin and oligo(dimethylsiloxane). Chemical Communications, 2021, 58, 108-111.	4.1	3
13	Ordered structures and sub-5 nm line patterns from rod–coil hybrids containing oligo(dimethylsiloxane). Chemical Communications, 2020, 56, 10341-10344.	4.1	6
14	White-Light-Emitting AIE/Eu ³⁺ -Doped Ion Gel with Multistimuli-Responsive Properties. ACS Applied Materials & Interfaces, 2020, 12, 45420-45428.	8.0	22
15	Thin-Film Self-Assembly of Block Copolymers Containing an Azobenzene-Based Liquid Crystalline Polymer and a Poly(ionic liquid). Macromolecules, 2020, 53, 9619-9630.	4.8	6
16	Block Copolymer Electrolytes with Excellent Properties in a Wide Temperature Range. ACS Applied Energy Materials, 2020, 3, 6536-6543.	5.1	16
17	Homeotropic Alignment and Selective Adsorption of Nanoporous Polymer Film Polymerized from Hydrogen-bonded Liquid Crystal. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1185-1191.	3.8	7
18	Liquid crystalline polymers: Discovery, development, and the future. Polymer, 2020, 202, 122740.	3.8	31

#	Article	IF	CITATIONS
19	Hierarchical nanostructures of a liquid crystalline block copolymer with a hydrogen-bonded calamitic mesogen. Polymer, 2019, 182, 121835.	3.8	3
20	Janus particles with tunable shapes prepared by asymmetric bottlebrush block copolymers. Polymer Chemistry, 2019, 10, 372-378.	3.9	23
21	Hierarchically ordered nanostructures of a supramolecular rod-coil block copolymer with a hydrogen-bonded discotic mesogen. Polymer Chemistry, 2019, 10, 991-999.	3.9	12
22	5 nm Ordered Structures Selfâ€Assembled by C ₂ â€Symmetric Hybrids with Polyhedral Oligomeric Silsesquioxane and Hexaâ€ <i>peri</i> àêHexabenzocoronene ChemPhysChem, 2019, 20, 1759-1764.	2.1	0
23	Hierarchically Ordered Structures of Rod–Rod Block Copolymers Containing Two Mesogen-Jacketed Liquid Crystalline Polymers. Macromolecules, 2019, 52, 9504-9511.	4.8	2
24	Temperature-controlled formation of inverse mesophases assembled from a rod–coil block copolymer. Polymer Chemistry, 2019, 10, 6031-6036.	3.9	12
25	Thermal annealing induced formation of polymeric nanopillars of asymmetric bottlebrush block copolymers. Polymer, 2019, 185, 121983.	3.8	O
26	Facile preparation and characterization of soluble aramid. Journal of Applied Polymer Science, 2018, 135, 4634159.	2.6	8
27	Tuning Structures of Mesogenâ€Jacketed Liquid Crystalline Polymers and Their Rod–Coil Diblock Copolymers by Varying Chain Rigidity. Macromolecular Chemistry and Physics, 2018, 219, 1700593.	2.2	6
28	Self-assembly and Properties of Block Copolymers Containing Mesogen-Jacketed Liquid Crystalline Polymers as Rod Blocks. Chinese Journal of Polymer Science (English Edition), 2018, 36, 811-821.	3.8	20
29	Morphologies and photonic properties of an asymmetric brush block copolymer with polystyrene and polydimethylsiloxane side chains. Polymer, 2018, 156, 169-178.	3.8	17
30	High-Performance Double-Network Ion Gels with Fast Thermal Healing Capability via Dynamic Covalent Bonds. Chemistry of Materials, 2018, 30, 7752-7759.	6.7	78
31	Hierarchically ordered structures of disk-cube triads containing hexa-peri-hexabenzocoronene and polyhedral oligomeric silsesquioxane. Soft Matter, 2018, 14, 6774-6782.	2.7	8
32	Head–Tail Asymmetry as the Determining Factor in the Formation of Polymer Cubosomes or Hexasomes in a Rod–Coil Amphiphilic Block Copolymer. Angewandte Chemie, 2018, 130, 10289-10293.	2.0	0
33	Persistent Formation of Self-Assembled Cylindrical Structure in a Liquid Crystalline Block Copolymer Constructed by Hydrogen Bonding. Macromolecules, 2018, 51, 5676-5684.	4.8	13
34	Head–Tail Asymmetry as the Determining Factor in the Formation of Polymer Cubosomes or Hexasomes in a Rod–Coil Amphiphilic Block Copolymer. Angewandte Chemie - International Edition, 2018, 57, 10132-10136.	13.8	46
35	Effect of thermal aging on microstructures of aramid composites. Polymer Composites, 2017, 38, 252-259.	4.6	5
36	Solid Polymer Electrolytes with Excellent High-Temperature Properties Based on Brush Block Copolymers Having Rigid Side Chains. ACS Applied Materials & Samp; Interfaces, 2017, 9, 6130-6137.	8.0	49

#	Article	IF	CITATIONS
37	Bulk self-assembly and ionic conductivity of a block copolymer containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid). Polymer Chemistry, 2017, 8, 1689-1698.	3.9	13
38	Hierarchical Self-Assembly of Disc-Rod Shape Amphiphiles Having Hexa-peri-hexabenzocoronene and a Relatively Long Rod. Langmuir, 2017, 33, 3311-3316.	3.5	3
39	Synthesis and characterization of new aramids based on o-(m-triphenyl)-terephthaloyl chloride and m-(m-triphenyl)-isophthaloyl chloride. Polymer, 2017, 109, 49-57.	3.8	27
40	Shape effect-induced spiral superstructures in a self-assembled achiral disc-bent core amphiphile. Chemical Communications, 2017, 53, 11794-11797.	4.1	6
41	Structural complexity induced by topology change in hybrids consisting of hexa-peri-hexabenzocoronene and polyhedral oligomeric silsesquioxane. Chemical Communications, 2017, 53, 8679-8682.	4.1	5
42	Hierarchical Structures in a Main-Chain/Side-Chain Combined Liquid Crystalline Polymer with a Polynorbornene Backbone and Multi-Benzene Side-Chain Mesogens. Macromolecules, 2016, 49, 7238-7245.	4.8	17
43	Hierarchically Self-Assembled Amphiphilic Alternating Copolymer Brush Containing Side-Chain Cholesteryl Units. Macromolecules, 2016, 49, 5993-6000.	4.8	10
44	Exploiting Host–Guest Interactions for the Synthesis of a Rod–Rod Block Copolymer with Crystalline and Liquidâ€Crystalline Blocks. Angewandte Chemie - International Edition, 2016, 55, 15007-15011.	13.8	14
45	Thermoreversible Orderâ^'Order Transition of a Triblock Copolymer Containing a Mesogenâ€Jacketed Liquid Crystalline Polymer with a Reâ€Entrant Phase Behavior. Macromolecular Chemistry and Physics, 2016, 217, 1081-1088.	2.2	3
46	Effects of main chain and acceptor content on phase behaviors of hydrogen-bonded main-chain/side-chain combined liquid crystalline polymers. Polymer, 2016, 84, 355-364.	3.8	13
47	The synthesis and self-assembly of disc-cube dyads with spacers of different lengths. Chemical Communications, 2016, 52, 3923-3926.	4.1	13
48	Synthesis and phase behavior of a polynorborneneâ€based molecular brush with dual "jacketing― effects. Journal of Polymer Science Part A, 2015, 53, 2116-2123.	2.3	6
49	Thermoreversible Ion Gel with Tunable Modulus Self-Assembled by a Liquid Crystalline Triblock Copolymer in Ionic Liquid. Macromolecules, 2015, 48, 4927-4935.	4.8	21
50	Synthesis and self-assembly of a triarm star-shaped rod-rod block copolymer. Chinese Journal of Polymer Science (English Edition), 2015, 33, 709-720.	3.8	17
51	Facile Synthesis and Phase Behaviors of Monofunctionalized Hexaâ€ <i>peri</i> â€hexabenzocoronenes. Asian Journal of Organic Chemistry, 2015, 4, 746-755.	2.7	7
52	POSS-Containing Jacketed Polymer: Hybrid Inclusion Complex with Hierarchically Ordered Structures at Sub-10 nm and Angstrom Length Scales. Macromolecules, 2015, 48, 2358-2366.	4.8	27
53	Extraordinary boundary morphologies of large-scale ordered domains of spheres in thin films of a narrowly dispersed diblock copolymer via thermodynamic control. Nanoscale, 2015, 7, 17756-17763.	5.6	6
54	Synthesis and sub-10 nm supramolecular self-assembly of a nanohybrid with a polynorbornene main chain and side-chain POSS moieties. RSC Advances, 2015, 5, 70163-70171.	3.6	16

#	Article	IF	Citations
55	Effects of rigid cores and flexible tails on the phase behaviors of polynorbornene-based mesogen-jacketed liquid crystalline polymers. Polymer Chemistry, 2015, 6, 7701-7710.	3.9	16
56	Microphase Separation and High Ionic Conductivity at High Temperatures of Lithium Salt-Doped Amphiphilic Alternating Copolymer Brush with Rigid Side Chains. Macromolecules, 2015, 48, 8557-8564.	4.8	18
57	Synthesis and self-assembly of a linear coil-coil-rod ABC triblock copolymer. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1524-1534.	3.8	23
58	Stab resistance of UHMWPE fiber composites impregnated with thermoplastics. Polymers for Advanced Technologies, 2014, 25, 1014-1019.	3.2	26
59	Synthesis of comb polyphenylenes by Suzuki coupling from AB macromonomers. Journal of Polymer Science Part A, 2014, 52, 1519-1524.	2.3	6
60	Ordered nanostructures at two different length scales mediated by temperature: A triphenyleneâ€containing mesogenâ€jacketed liquid crystalline polymer with a long spacer. Journal of Polymer Science Part A, 2014, 52, 295-304.	2.3	28
61	Oneâ€pot synthesis of hyperbranched poly(aryl ether ketone)s for the modification of bismaleimide resins. Polymer Engineering and Science, 2014, 54, 1675-1685.	3.1	11
62	Mesogen-Jacketed Liquid Crystalline Polymers with a Polynorbornene Main Chain: Green Synthesis and Phase Behaviors. Macromolecules, 2014, 47, 2803-2810.	4.8	33
63	Hierarchically ordered ABA triblock copolymer with large difference in glass transition temperatures of the two blocks. Journal of Polymer Science Part A, 2014, 52, 1737-1744.	2.3	6
64	Synthesis and properties of a rod-g-rod bottlebrush with a semirigid mesogen-jacketed polymer as the side chain. Polymer Chemistry, 2014, 5, 4948-4956.	3.9	11
65	Synthesis and phase behavior of a new 2-vinylbiphenyl-based mesogen-jacketed liquid crystalline polymer with a high glass transition temperature and low threshold molecular weight. Polymer Chemistry, 2014, 5, 4526-4533.	3.9	19
66	New Morphologies and Phase Transitions of Rod–Coil Dendritic–Linear Block Copolymers Depending on Dendron Generation and Preparation Procedure. Macromolecules, 2014, 47, 146-151.	4.8	14
67	Influence of fluorinated substituent and terminal length on phase behavior of mesogenâ€jacketed liquid crystalline polymers with a biphenyl mesogen. Journal of Polymer Science Part A, 2013, 51, 557-564.	2.3	7
68	Solvent-induced hierarchical self-assembly of amphiphilic PEG(Gm)-b-PS dendritic-linear block copolymers. Soft Matter, 2013, 9, 11398.	2.7	13
69	Remarkably Rich Variety of Nanostructures and Order–Order Transitions in a Rod–Coil Diblock Copolymer. Macromolecules, 2013, 46, 5308-5316.	4.8	70
70	Ordered gold nanoparticle arrays obtained with supramolecular block copolymers. Soft Matter, 2013, 9, 4715.	2.7	18
71	Crystal orientation and melting behavior of poly(É>-Caprolactone) under one-dimensionally "hard― confined microenvironment. Chinese Journal of Polymer Science (English Edition), 2013, 31, 946-958.	3.8	10
72	Controlling the packing of gold nanoparticles with grafted liquid crystals. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	9

#	Article	IF	CITATIONS
73	Mesogen-jacketed liquid crystalline polymers: from molecular design to polymer light-emitting diode applications. Polymer Chemistry, 2012, 3, 1947.	3.9	23
74	Synthesis and Characterization of Mesogen-Jacketed Liquid Crystalline Polymers through Hydrogen-Bonding. Macromolecules, 2012, 45, 2682-2689.	4.8	25
75	Thermoreversible Order–Order Transition of a Diblock Copolymer Induced by the Unusual Coil–Rod Conformational Change of One Block. Macromolecules, 2012, 45, 9719-9726.	4.8	28
76	Competition and Promotion between Two Different Liquid-Crystalline Building Blocks: Mesogen-Jacketed Liquid-Crystalline Polymers and Triphenylene Discotic Liquid Crystals. Macromolecules, 2012, 45, 3346-3355.	4.8	58
77	Jacketed homopolymer with bipolar dendritic side groups and its applications in electroluminescent devices. Journal of Polymer Science Part A, 2012, 50, 581-589.	2.3	8
78	Synthesis and properties of comb polymers with semirigid mesogenâ€jacketed polymers as side chains. Journal of Polymer Science Part A, 2012, 50, 918-926.	2.3	16
79	Amphiphilic mesogenâ€jacketed liquid crystalline polymers: Design, synthesis, and selfâ€assembly behaviors. Journal of Polymer Science Part A, 2012, 50, 1792-1800.	2.3	12
80	Synthesis and characterization of electrophosphorescent jacketed conjugated polymers. Journal of Polymer Science Part A, 2012, 50, 3895-3903.	2.3	12
81	Orderâ "Order Transition in a Rodâ "Coil Diblock Copolymer Induced by Supercritical CO ₂ . Macromolecules, 2011, 44, 2900-2907.	4.8	38
82	Dendron-Jacketed Electrophosphorescent Copolymers: Improved Efficiency and Tunable Emission Color by Partial Energy Transfer. Macromolecules, 2011, 44, 9556-9564.	4.8	21
83	Synthesis and properties of mesogenâ€jacketed liquid crystalline polymers containing biphenyl mesogen with asymmetric substitutions. Journal of Polymer Science Part A, 2011, 49, 3207-3217.	2.3	27
84	SYNTHESIS OF POLYSTYRENE- <l>b</l> -POLY(SODIUM VINYLTEREPHTHALATE) BLOCK COPOLYMER AND THEIR EFFECT ON PET CRYSTALLIZATION. Acta Polymerica Sinica, 2011, 011, 1053-1059.	0.0	3
85	A novel pentaerythritol-based carbosilane liquid crystalline dendrimer containing 12 nitroazobenzene groups on the periphery. Chinese Journal of Chemistry, 2010, 22, 1034-1038.	4.9	4
86	Synthesis of novel carbosilane dendrimers based on pentaerythritol. Chinese Journal of Chemistry, 2010, 22, 1366-1371.	4.9	3
87	A novel mesogenâ€jacketed liquid crystalline electroluminescent polymer with both thiophene and oxadiazole in conjugated side chain. Journal of Polymer Science Part A, 2010, 48, 1502-1515.	2.3	19
88	Waterâ€soluble triplyâ€responsive homopolymers of <i>N,N</i> â€dimethylaminoethyl methacrylate with a terminal azobenzene moiety. Journal of Polymer Science Part A, 2010, 48, 2564-2570.	2.3	56
89	Electroluminescent block copolymers containing oxadiazole and thiophene via ATRP. Journal of Polymer Science Part A, 2010, 48, 5670-5678.	2.3	5
90	Preparation and properties of highly birefringent liquid crystalline materials: styrene monomers with acetylenes, naphthyl, and isothiocyanate groups. Liquid Crystals, 2010, 37, 453-462.	2,2	18

#	Article	IF	Citations
91	Special positive birefringence properties of mesogen-jacketed liquid crystalline polymer films for optical compensators. Polymer Chemistry, 2010, 1, 430-433.	3.9	6
92	Synthesis and Hierarchical Self-Assembly of Rodâ^'Rod Block Copolymers via Click Chemistry between Mesogen-Jacketed Liquid Crystalline Polymers and Helical Polypeptides. Macromolecules, 2010, 43, 5637-5646.	4.8	58
93	Mesogen-jacketed liquid crystalline polymers. Chemical Society Reviews, 2010, 39, 3072.	38.1	202
94	Selfâ€Assembly and Photoresponsivity Property of Amphiphilic ABA Triblock Copolymers Containing Azobenzene Moieties in Dilute Solution. Macromolecular Chemistry and Physics, 2009, 210, 1556-1562.	2.2	16
95	Jacketed polymers: Controlled synthesis of mesogenâ€jacketed polymers and block copolymers. Journal of Polymer Science Part A, 2009, 47, 319-330.	2.3	23
96	Influence of alkoxy tail length and unbalanced mesogenic core on phase behavior of mesogenâ€jacketed liquid crystalline polymers. Journal of Polymer Science Part A, 2009, 47, 505-514.	2.3	27
97	AB ₂ â€type amphiphilic block copolymers composed of poly(ethylene glycol) and poly(<i>N</i> à€isopropylacrylamide) via singleâ€electron transfer living radical polymerization: Synthesis and characterization. Journal of Polymer Science Part A, 2009, 47, 4420-4427.	2.3	70
98	Synthesis, characterization, and electroluminescence of novel copolyfluorenes and their applications in white light emission. Journal of Polymer Science Part A, 2009, 47, 4555-4565.	2.3	10
99	Effects of Mesogenic Shape and Flexibility on the Phase Structures of Mesogen-Jacketed Liquid Crystalline Polymers with Bent Side Groups Containing 1,3,4-Oxadiazole. Macromolecules, 2009, 42, 2542-2550.	4.8	45
100	Synthesis and properties of highly birefringent liquid crystalline materials: 2,5-bis(5-alkyl-2-butadinylthiophene-yl) styrene monomers. Liquid Crystals, 2009, 37, 69-76.	2.2	14
101	Single layer lightâ€emitting diodes from copolymers comprised of mesogenâ€jacketed polymer containing oxadiazole units and PVK. Journal of Polymer Science Part A, 2008, 46, 1843-1851.	2.3	16
102	Synthesis and characterization of bipolar copolymers containing oxadiazole and carbazole pendant groups and their application to electroluminescent devices. Journal of Polymer Science Part A, 2008, 46, 5452-5460.	2.3	31
103	Novel mesogenâ€jacketed poly(<i>p</i> â€phenylenevinylene) derivatives bearing oxadiazole pendants: Design, synthesis, and optoelectronic properties. Journal of Polymer Science Part A, 2008, 46, 7173-7186.	2.3	14
104	Bipolar copolymers comprised mesogenâ€jacketed polymer containing oxadiazole units and PVK as host materials for electroluminescent devices. Journal of Polymer Science Part A, 2008, 46, 7861-7867.	2.3	14
105	Synthesis and properties of silicon-containing bismaleimide resins. Journal of Applied Polymer Science, 2008, 109, 190-199.	2.6	24
106	Synthesis, characterisation and liquid crystal properties of 2,5â€bis[5â€alkyl(alkoxy)phenylâ€1,3,4â€oxadiazole]bromobenzenes. Liquid Crystals, 2008, 35, 133-141.	2.2	26
107	Competition between liquid crystallinity and block copolymerself-assembly in core–shell rod–coil block copolymers. Soft Matter, 2008, 4, 458-461.	2.7	32
108	Organic–inorganic hybrid bent-core liquid crystals with cubic silsesquioxane cores. Journal of Materials Chemistry, 2008, 18, 3481.	6.7	58

#	Article	IF	CITATIONS
109	ABA type liquid crystalline triblock copolymers by combination of living cationic polymerizaition and ATRP: synthesis and self-assembly. Soft Matter, 2008, 4, 1230.	2.7	33
110	Star Mesogen-Jacketed Liquid Crystalline Polymers with Silsesquioxane Core:Â Synthesis and Characterization. Macromolecules, 2007, 40, 4887-4894.	4.8	48
111	Controlled grafting of ethyl cellulose with azobenzene-containing polymethacrylates via atom transfer radical polymerization. Journal of Polymer Science Part A, 2007, 45, 1653-1660.	2.3	48
112	ABA-type amphiphilic triblock copolymers containingp-ethoxy azobenzene via atom transfer radical polymerization: Synthesis, characterization, and properties. Journal of Polymer Science Part A, 2007, 45, 2225-2234.	2.3	40
113	Synthesis and characterization of graft copolymers containing poly(p-phenylene) main chains and mesogen-jacketed liquid-crystalline polystyrene side chains. Journal of Polymer Science Part A, 2007, 45, 2543-2555.	2.3	8
114	Synthesis and characterization of 4-arm star side-chain liquid crystalline polymers containing azobenzene with different terminal substituents via ATRP. Journal of Polymer Science Part A, 2007, 45, 3342-3348.	2.3	18
115	Effect of the terminal substituent of azobenzene on the properties of ABA triblock copolymers via atom transfer radical polymerization. Journal of Polymer Science Part A, 2007, 45, 5190-5198.	2.3	14
116	ABAâ€type liquid crystalline triblock copolymers via nitroxideâ€mediated radical polymerization: Design, synthesis, and morphologies. Journal of Polymer Science Part A, 2007, 45, 5949-5956.	2.3	11
117	Water soluble multi-walled carbon nanotubes prepared via nitroxide-mediated radical polymerization. Journal of Materials Chemistry, 2006, 16, 4619.	6.7	48
118	Synthesis and properties of azobenzene-containing poly(1-alkyne)s with different functional pendant groups. Journal of Polymer Science Part A, 2006, 44, 4532-4545.	2.3	18
119	Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization. Journal of Polymer Science Part A, 2006, 44, 4656-4667.	2.3	90
120	Synthesis and chiroptical properties of optically active poly(N-propargylamide) bearing photoisomerizable azobenzene moieties. Journal of Polymer Science Part A, 2006, 44, 6047-6054.	2.3	23
121	Restudy of the unusual phase behavior of the mesogen-jacketed liquid crystal polymers. Science in China Series B: Chemistry, 2006, 49, 116-125.	0.8	2
122	Dumbbell-shaped Carbosilane Dendrimers Based on 1,6-Hexanediol. Chinese Journal of Chemistry, 2005, 23, 11-13.	4.9	4
123	Copolymers of 2,5-bis[(4-methoxyphenyl) oxycarbonyl]styrene with styrene and methyl methacrylate: Synthesis, monomer reactivity ratios, thermal properties, and liquid crystalline behavior. Journal of Polymer Science Part A, 2005, 43, 2666-2674.	2.3	13
124	Copolymers of 2,5-bis[(4-methoxyphenyl) oxycarbonyl]styrene withn-butyl acrylate: Design, synthesis, and characterization. Journal of Polymer Science Part A, 2005, 43, 5935-5943.	2.3	8
125	Synthesis of a novel hybrid liquid-crystalline rod-coil diblock copolymer. Journal of Polymer Science Part A, 2003, 41, 1799-1806.	2.3	38
126	Preparation of Complex Ratioâ€Dependent Nanomaterials from Polymerizable Hydrogenâ€Bonded Liquid Crystal. Macromolecular Chemistry and Physics, 0, , 2200132.	2.2	0