Paul Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2674692/publications.pdf

Version: 2024-02-01

85	1,774	23 h-index	37
papers	citations		g-index
101	101	101	1973 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Stereoselective synthesis of analogues of deoxyfebrifugine. Journal of Chemical Research, 2022, 46, 174751982110472.	1.3	1
2	Conversions of sulfone-containing vinyl azides to vinyl triazoles and enamides. Tetrahedron, 2021, 83, 131933.	1.9	2
3	Differential Effects of Halofuginone Enantiomers on Muscle Fibrosis and Histopathology in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2021, 22, 7063.	4.1	4
4	Synthesis and optimisation of P3 substituted vinyl sulfone-based inhibitors as anti-trypanosomal agents. Bioorganic and Medicinal Chemistry, 2020, 28, 115774.	3.0	3
5	Isomerisation of Vinyl Sulfones for the Stereoselective Synthesis of Vinyl Azides. European Journal of Organic Chemistry, 2020, 2020, 6228-6235.	2.4	6
6	Synthesis of the 4-aza cyclopentenone analogue of \hat{l} "12,14-15-deoxy-PGJ2 and S-cysteine adducts. Tetrahedron Letters, 2020, 61, 151969.	1.4	1
7	Synthesis of 2-guanidinyl pyridines and their trypsin inhibition and docking. Bioorganic and Medicinal Chemistry, 2020, 28, 115612.	3.0	O
8	Synthesis and Structural Elucidation of 1,2â€Disubstituted 3â€Fluoropiperidines. European Journal of Organic Chemistry, 2020, 2020, 1165-1176.	2.4	6
9	A Simple Zinc-Mediated Method for Selenium Addition to Michael Acceptors. Molecules, 2020, 25, 2018.	3.8	10
10	1,2-Thiazines and Their Benzo Derivatives., 2020,, 530-530.		0
11	The Titanium-Mediated Double Reductive Cleavage of Cyclic Sulfonamides for the Synthesis of Aryl Pyrrolidines. Journal of Organic Chemistry, 2019, 84, 2969-2975.	3.2	4
12	Strategies for the Asymmetric Construction of Pelletierine and its Use in the Synthesis of Sedridine, Myrtine, and Lasubine. European Journal of Organic Chemistry, 2019, 2019, 5354-5367.	2.4	11
13	Chemical synthesis of febrifugine and analogues. Bioorganic and Medicinal Chemistry, 2018, 26, 2199-2220.	3.0	19
14	Asymmetric synthesis of (\hat{a}°) - and $(+)$ -neodichroine/hydrachine A from $(+)$ - and (\hat{a}°) -febrifugine. Tetrahedron Letters, 2018, 59, 1627-1629.	1.4	2
15	Alkynyldicobalt Derivatives of Dibenzosuberenol and Dibenzocyclooctatrienâ€5â€ol: Ring Conformations, Ease of Carbonyl Elimination and Relevance to Pauson–Khand Cyclization. European Journal of Inorganic Chemistry, 2017, 2017, 2048-2057.	2.0	2
16	Ammonium formate-based one-pot reductive Heck reactions for the construction of cyclic sulfonamides. Tetrahedron Letters, 2017, 58, 4559-4562.	1.4	10
17	An asymmetric synthesis of febrifugine, halofuginone and their hemiketal isomers. Tetrahedron, 2017, 73, 5493-5499.	1.9	14
18	Evaluating the Antibacterial Properties of Polyacetylene and Glucosinolate Compounds with Further Identification of Their Presence within Various Carrot (⟨i⟩Daucus carota⟨ i⟩) and Broccoli (⟨i⟩Brassica oleracea⟨ i⟩) Cultivars Using High-Performance Liquid Chromatography with a Diode Array Detector and Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry Analyses. Journal of Agricultural and Food Chemistry, 2017, 65, 7186-7191.	5.2	24

#	Article	IF	CITATIONS
19	Synthesis and Evaluation of 1,2,3â€Triazoleâ€Containing Vinyl and Allyl Sulfones as Antiâ€Trypanosomal Agents. European Journal of Organic Chemistry, 2017, 2017, 175-185.	2.4	19
20	15-Deoxy-Δ12,14-Prostaglandin J2 Modifies Components of the Proteasome and Inhibits Inflammatory Responses in Human Endothelial Cells. Frontiers in Immunology, 2016, 7, 459.	4.8	19
21	A ring closing metathesis-manganese dioxide oxidation sequence for the synthesis of substituted pyrroles. Tetrahedron, 2016, 72, 2552-2559.	1.9	14
22	Aminooxylation Horner–Wadsworth–Emmons Sequence for the Synthesis of Enantioenriched γ-Functionalized Vinyl Sulfones. Journal of Organic Chemistry, 2016, 81, 1416-1424.	3.2	21
23	Quantifying tetrahedral adduct formation and stabilization in the cysteine and the serine proteases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1382-1391.	2.3	8
24	Quantitative human exposure model to assess the level of glucosinolates upon thermal processing of cruciferous vegetables. LWT - Food Science and Technology, 2015, 63, 253-261.	5.2	9
25	Asymmetric synthesis of (+)- and (â^')-deoxyfebrifugine and deoxyhalofuginone. Tetrahedron Letters, 2015, 56, 6433-6435.	1.4	10
26	Hemiacetal stabilization in a chymotrypsin inhibitor complex and the reactivity of the hydroxyl group of the catalytic serine residue of chymotrypsin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1119-1127.	2.3	9
27	Bis{2-[(3,5-diphenyl-1 <i>H</i> -pyrrol-2-ylidene-îº <i>N</i>)amino]-3,5-diphenylpyrrol-1-ido-îº <i>N</i>)anino]-3,5-diphenylpyrrol-1-ido-îº <i>N</i>)anino]-3,5-diphenylpyrrol-1-ido-î <a <="" href="maintena" td=""><td>0.5</td><td>6</td>	0.5	6
28	The chemistry and biology of febrifugine and halofuginone. Bioorganic and Medicinal Chemistry, 2014, 22, 1993-2004.	3.0	82
29	Preparation, anti-trypanosomal activity and localisation of a series of dipeptide-based vinyl sulfones. Organic and Biomolecular Chemistry, 2014, 12, 7561-7571.	2.8	26
30	Synthesis of (+)-perillyl alcohol from (+)-limonene. Tetrahedron Letters, 2014, 55, 1431-1433.	1.4	19
31	Vinyl Sulfone-Based Peptidomimetics as Anti-Trypanosomal Agents: Design, Synthesis, Biological and Computational Evaluation. Journal of Medicinal Chemistry, 2013, 56, 6638-6650.	6.4	93
32	Double Reduction of Cyclic Aromatic Sulfonamides: Synthesis of (+)-Mesembrine and (+)-Mesembranol. Journal of Organic Chemistry, 2013, 78, 3410-3415.	3.2	29
33	<i>trans</i> -Tetradec-2-enoic Acid in <i>Impatiens glandulifera</i> . Synthetic Communications, 2013, 43, 1404-1412.	2.1	7
34	Halonium Ion Triggered Rearrangement of Unsaturated Benzo-Annulated Bi- and Tricyclic Sulfonamides. Journal of Organic Chemistry, 2013, 78, 10443-10451.	3.2	19
35	Absolute Configuration of Falcarinol (9Z-heptadeca-1,9-diene-4,6-diyn-3-ol) from Pastinaca Sativa. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	2
36	Temporary thio-derivatization in the synthesis of (+)-4-acetylbromoxone. Tetrahedron Letters, 2012, 53, 5936-5938.	1.4	5

#	Article	IF	CITATIONS
37	Regioselectivity in the Intramolecular Heck Reaction of a Series of Cyclic Sulfonamides: An Experimental and Computational Study. Chemistry - A European Journal, 2012, 18, 13379-13387.	3.3	12
38	An Investigation into the One-Pot Heck Olefinationâ^'Hydrogenation Reaction. Journal of Organic Chemistry, 2011, 76, 2187-2194.	3.2	46
39	Stereo-Inversion in the $(4R)$ - \hat{l}^3 -Decanolactone Synthesis by Saccharomyces cerevisiae: (2E,4S)-4-Hydroxydec-2-enoic Acid Acts as a Key Intermediate. Helvetica Chimica Acta, 2011, 94, 2125-2140.	1.6	0
40	Vinyl Sulfone Containing Parasitic Cysteinyl Protease Inhibitors. Current Bioactive Compounds, 2011, 7, 218-236.	0.5	10
41	A short synthesis of (+) and (â^²)-falcarinol. Tetrahedron, 2010, 66, 9681-9687.	1.9	19
42	Dihydroxylation of Vinyl Sulfones: Stereoselective Synthesis of (+)- and (â^')-Febrifugine and Halofuginone. Journal of Organic Chemistry, 2010, 75, 518-521.	3.2	52
43	Stereocontrolled Synthesis of the PPAR- \hat{l}^3 Agonist 10-Nitrolinoleic Acid. Journal of Organic Chemistry, 2010, 75, 5334-5336.	3.2	16
44	The thio-adduct facilitated, enzymatic kinetic resolution of 4-hydroxycyclopentenone and 4-hydroxycyclohexenone. Organic and Biomolecular Chemistry, 2010, 8, 539-545.	2.8	24
45	Selective generation of quaternary all-carbon-centres through Heck-cyclisations: synthesis of mesembrane. Chemical Communications, 2010, 46, 937-939.	4.1	17
46	Diastereoselective functionalisation of benzo-annulated bicyclic sultams: Application for the synthesis of <i>cis</i> -2,4-diarylpyrrolidines. Beilstein Journal of Organic Chemistry, 2009, 5, 69.	2.2	10
47	Stereocontrolled preparation of bicyclic alkaloid analogues: an approach towards the kinabalurine skeleton. Tetrahedron, 2009, 65, 8259-8268.	1.9	23
48	X-ray Crystallographic and NMR Spectroscopic Study of $(\hat{l}\cdot sup>2-Alkene)(\hat{l}\cdot alkyne)$ pentacarbonyldicobalt Complexes: Arrested Pausonâ'Khand Reaction Intermediates. Organometallics, 2009, 28, 6308-6319.	2.3	22
49	Studies concerning the electrophilic amino-alkene cyclisation for the synthesis of bicyclic amines. Organic and Biomolecular Chemistry, 2009, 7, 986.	2.8	14
50	Formation of cyclic sulfonamides via an unusual 8-endo-trig Heck olefination reaction. Tetrahedron Letters, 2008, 49, 7187-7190.	1.4	13
51	Rapid synthesis of the tetrahydroquinoline alkaloids: angustureine, cuspareine and galipinine. Tetrahedron, 2008, 64, 8067-8072.	1.9	58
52	Synthesis of functionalised polyethylene glycol derivatives of naproxen for biomedical applications. Tetrahedron, 2008, 64, 10132-10139.	1.9	18
53	Synthesis of 5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-ones: selective antagonists of muscarinic (M3) receptors. Organic and Biomolecular Chemistry, 2008, 6, 2138.	2.8	19
54	Synthesis of a 6-aryloxymethyl-5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one: a muscarinic (M3) antagonist. Organic and Biomolecular Chemistry, 2008, 6, 2158.	2.8	11

#	Article	IF	CITATIONS
55	Iridium-Mediated Isomerizationâ °Cyclization of Bicyclic Pausonâ °Khand Derived Allylic Alcohols. Journal of Organic Chemistry, 2008, 73, 8601-8604.	3.2	27
56	The conjugate addition–Peterson olefination reaction for the preparation of cross-conjugated cyclopentenone, PPAR-γ ligands. Organic and Biomolecular Chemistry, 2008, 6, 4649.	2.8	40
57	The Double Reduction of Cyclic Sulfonamides for the Synthesis of (4S-Phenylpyrrolidin-2R-yl)methanol and 2S-Methyl-4S-phenylpyrrolidine. Journal of Organic Chemistry, 2007, 72, 1830-1833.	3.2	25
58	X-ray Crystal Structure of an Alkene–Pentacarbonyldicobalt–Alkyne Complex: Isolation of a Stable Magnus-Type Pauson–Khand Reaction Intermediate. Angewandte Chemie - International Edition, 2007, 46, 2907-2910.	13.8	34
59	Synthesis, Characterisation, and Biological Studies of CdTe Quantum Dot–Naproxen Conjugates. ChemMedChem, 2007, 2, 183-186.	3.2	31
60	Studies concerning the double reduction of Diels–Alder derived bicylic sulfonamides. Tetrahedron Letters, 2007, 48, 4733-4736.	1.4	10
61	Synthesis of trans-vaccenic acid and cis-9-trans-11-conjugated linoleic acid. Tetrahedron, 2006, 62, 4838-4843.	1.9	24
62	Enzymatic kinetic resolution of 1,1-dioxo-2,3-dihydro-1H- $\hat{1l}$ »6-thiophen-3-ol via temporary derivatisation. Tetrahedron Letters, 2006, 47, 5273-5276.	1.4	5
63	Novel preparation of (\hat{a}^*) -4-hydroxycyclohex-2-enone: reaction of 4-hydroxycyclohex-2-enone and 4-hydroxycyclopent-2-enone with some thiols. Tetrahedron: Asymmetry, 2006, 17, 355-362.	1.8	17
64	8-Methylquinoline Palladacycles: Stable and Efficient Catalysts for Carbonâ€"Carbon Bond Formation ChemInform, 2006, 37, no.	0.0	0
65	The Epoxy-Ramberg–BÃæklund Reaction (ERBR): A Sulfone-Based Method for the Synthesis of Allylic Alcohols. European Journal of Organic Chemistry, 2006, 2006, 1740-1754.	2.4	25
66	8-Methylquinoline palladacycles: stable and efficient catalysts for carbon–carbon bond formation. Tetrahedron, 2005, 61, 9696-9704.	1.9	54
67	Double Reduction of Cyclic Aromatic Sulfonamides:  A Novel Method for the Synthesis of 2- and 3-Aryl-Substituted Cyclic Amines. Organic Letters, 2005, 7, 43-46.	4.6	62
68	Total Synthesis and Biological Activity of 13,14-Dehydro-12-Oxo-Phytodienoic Acids (Deoxy-J1-Phytoprostanes). ChemBioChem, 2005, 6, 276-280.	2.6	42
69	Asymmetric Dihydroxylation of Vinyl Sulfones: Routes to Enantioenriched α-Hydroxyaldehydes and the Enantioselective Syntheses of Furan-2(5H)-ones ChemInform, 2004, 35, no.	0.0	O
70	Reactions of some cyclopentenones with selected cysteine derivatives and biological activities of the product thioethers. Bioorganic and Medicinal Chemistry, 2004, 12, 3221-3227.	3.0	29
71	Facile biocatalytic syntheses of optically active 4-hydroxycyclohex-2-enone and 4-benzylthiacyclopent-2-enone. Tetrahedron: Asymmetry, 2004, 15, 2807-2809.	1.8	20
72	Synthesis of î"12,14-15-deoxy-PG-J1 methyl ester and epi-î"12-15-deoxy-PG-J1. Tetrahedron, 2004, 60, 2531-2538.	. 1.9	41

#	Article	IF	CITATIONS
73	Microwave-Promoted Pauson—Khand Reactions ChemInform, 2003, 34, no.	0.0	1
74	Conjugate Additionâ€"Peterson Olefination Reactions: Expedient Routes to Cross Conjugated Dienones ChemInform, 2003, 34, no.	0.0	0
75	Asymmetric dihydroxylation of vinyl sulfones: routes to enantioenriched \hat{l}_{\pm} -hydroxyaldehydes and the enantioselective syntheses of furan-2(5H)-ones. Tetrahedron, 2003, 59, 7973-7981.	1.9	53
76	Conjugate addition–Peterson olefination reactions: expedient routes to cross conjugated dienones. Tetrahedron Letters, 2003, 44, 5741-5745.	1.4	40
77	Microwave promoted Pauson–Khand reactions. Tetrahedron Letters, 2002, 43, 7859-7862.	1.4	59
78	Ring closing metathesis reactions of isoquinoline and \hat{l}^2 -carboline enamines. Tetrahedron Letters, 2000, 41, 3967-3970.	1.4	24
79	Sequential and cascade palladium catalysed cyclisation-anion capture-olefin metathesis. Tetrahedron Letters, 1999, 40, 3021-3024.	1.4	81
80	Metathesis of aniline and 1,2-dihydroquinoline derivatives. Tetrahedron Letters, 1999, 40, 5247-5250.	1.4	60
81	The Epoxy-Ramberg-BÃ e klund Reaction: A New Route to Allylic Alcohols. Tetrahedron Letters, 1997, 38, 3055-3058.	1.4	27
82	Synthesis and Spectroscopy of Coordination Compounds of a Versatile Bridging Ligand. Molecular Structures of the Dinuclear Compounds [Co2(bdnol)(NCS)3], [Zn2(bdnol)Cl(NCS)2], and [Cu2(bdnol)(NO3)3] and of the Polymeric Copper(I) Compound [Cu2(Hbdnol)(NCS)2]. Inorganic Chemistry, 1995, 34, 6302-6311.	4.0	27
83	Novel trinuclear and dinuclear nickel coordination compounds with a new pentadentate ligand. Crystal structures of [Ni3(bdnol)(EtOH)Cl5] and [Ni2(bdnol)Cl3]. Journal of the Chemical Society Chemical Communications, 1993, , 1746.	2.0	9
84	An enantiodivergent synthesis of N-Boc-protected (R)- and (S)-4-amino cyclopent-2-en-1-one. Journal of Chemical Research, 0, , 174751982110477.	1.3	0
85	Asymmetric Synthesis of \hat{I}^3 -Amino-Functionalised Vinyl Sulfones: De Novo Preparation of Cysteine Protease Inhibitors. Synthesis, 0, 54, .	2.3	0