$\tilde{D} D_{J} \tilde{D}^{0} \tilde{D}^{3} \tilde{A} \tilde{D} \gg \tilde{D}^{0} \tilde{D}^{1} \tilde{D} \tilde{D}^{3} \tilde{A} \tilde{N} \in \tilde{D}^{3} \tilde{A} \tilde{D} \gg \tilde{N}^{\prime} \tilde{D}^{2}$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2674241/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bearing State Monitoring Device for an Asynchronous Motor by the Current and Voltage Park Vector Components. Electrotechnical Systems and Complexes, 2022, , 62-70.	0.2	0
2	Efficiency Increase of Energy Systems in Oil and Gas Industry by Evaluation of Electric Drive Lifecycle. Energies, 2021, 14, 6074.	3.1	8
3	Identification of the Technical Condition of Induction Motor Groups by the Total Energy Flow. Energies, 2021, 14, 6677.	3.1	4
4	A Soft Sensor for Measuring the Wear of an Induction Motor Bearing by the Park's Vector Components of Current and Voltage. Sensors, 2021, 21, 7900.	3.8	7
5	Diagnostics of an asynchronous motor powered from a self-commutated voltage inverter. IOP Conference Series: Materials Science and Engineering, 2019, 560, 012171.	0.6	2
6	About increasing informativity of diagnostic system of asynchronous electric motor by extracting additional information from values of consumed current parameter. Journal of Physics: Conference Series, 2018, 1015, 032158.	0.4	10
7	AC motor diagnostics system based on complex parametric analysis. IOP Conference Series: Materials Science and Engineering, 2017, 177, 012007.	0.6	13
8	The probability estimate of the defects of the asynchronous motors based on the complex method of diagnostics. IOP Conference Series: Earth and Environmental Science, 2017, 87, 032055.	0.3	6
9	The prediction of the residual life of electromechanical equipment based on the artificial neural network. IOP Conference Series: Earth and Environmental Science, 2017, 87, 032056.	0.3	25
10	Method of Mode Control Based on the Neural Network Fault Diagnosis and Evaluation of the Technical Condition of Electrically Driven Gas Pumping Unit. Electrotechnical Systems and Complexes, 2017, , 47-54.	0.2	0