Xiaohu Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/267296/publications.pdf

Version: 2024-02-01

259 papers

12,742 citations

54 h-index

30070

99 g-index

259 all docs

259 docs citations

times ranked

259

8045 citing authors

#	Article	IF	Citations
1	Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 2019, 152, 21-37.	11.3	1,069
2	Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 2018, 142, 75-85.	11.3	675
3	High-solid anaerobic digestion of sewage sludge under mesophilic conditions: Feasibility study. Bioresource Technology, 2012, 104, 150-156.	9.6	354
4	Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Research, 2020, 180, 115912.	11.3	343
5	High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Management, 2013, 33, 308-316.	7.4	322
6	Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis. PLoS ONE, 2014, 9, e102548.	2.5	283
7	Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chemical Engineering Journal, 2015, 264, 174-180.	12.7	274
8	Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Research, 2019, 157, 228-237.	11.3	239
9	Revealing the Mechanisms of Polyethylene Microplastics Affecting Anaerobic Digestion of Waste Activated Sludge. Environmental Science & Environmental	10.0	199
10	Magnetite Triggering Enhanced Direct Interspecies Electron Transfer: A Scavenger for the Blockage of Electron Transfer in Anaerobic Digestion of High-Solids Sewage Sludge. Environmental Science & Enchapse Technology, 2018, 52, 7160-7169.	10.0	198
11	Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Science of the Total Environment, 2018, 634, 195-204.	8.0	197
12	Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge. Bioresource Technology, 2013, 131, 152-158.	9.6	183
13	Occurrence State and Molecular Structure Analysis of Extracellular Proteins with Implications on the Dewaterability of Waste-Activated Sludge. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental &	10.0	174
14	New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy. Bioresource Technology, 2014, 159, 412-420.	9.6	168
15	Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity. Chemical Engineering Journal, 2020, 384, 123329.	12.7	160
16	Perspective on enhancing the anaerobic digestion of waste activated sludge. Journal of Hazardous Materials, 2020, 389, 121847.	12.4	160
17	Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio. Bioresource Technology, 2016, 216, 323-330.	9.6	145
18	Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution. Water Research, 2020, 184, 116100.	11.3	137

#	Article	IF	CITATIONS
19	Unveiling the mechanisms of medium-chain fatty acid production from waste activated sludge alkaline fermentation liquor through physiological, thermodynamic and metagenomic investigations. Water Research, 2020, 169, 115218.	11.3	124
20	Flow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: Implication for risk assessment of sludge applied to soil. Science of the Total Environment, 2014, 476-477, 242-249.	8.0	117
21	New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: Organic matter degradation and methanogenic pathways. Journal of Hazardous Materials, 2018, 342, 1-9.	12.4	115
22	Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge. Scientific Reports, 2016, 6, 25857.	3.3	109
23	An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environmental Pollution, 2020, 266, 115375.	7.5	107
24	Revisiting Microplastics in Landfill Leachate: Unnoticed Tiny Microplastics and Their Fate in Treatment Works. Water Research, 2021, 190, 116784.	11.3	106
25	Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: New insights through structure evolution. Water Research, 2018, 131, 177-185.	11.3	101
26	Combining Batteryâ€Type and Pseudocapacitive Charge Storage in Ag/Ti ₃ C ₂ T <i>>_x</i> MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport. Advanced Science, 2020, 7, 2000621.	11.2	101
27	Humification in extracellular polymeric substances (EPS) dominates methane release and EPS reconstruction during the sludge stabilization of high-solid anaerobic digestion. Water Research, 2020, 175, 115686.	11.3	99
28	Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge. RSC Advances, 2016, 6, 1581-1588.	3.6	98
29	Impact of a high ammonia-ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion. Bioresource Technology, 2017, 245, 598-605.	9.6	92
30	Effects of chemical pretreatments on microplastic extraction in sewage sludge and their physicochemical characteristics. Water Research, 2020, 171, 115379.	11.3	91
31	Improving the treatment of waste activated sludge using calcium peroxide. Water Research, 2020, 187, 116440.	11.3	90
32	Metagenomic characterization of the enhanced performance of anaerobic fermentation of waste activated sludge with CaO2 addition at ambient temperature: Fatty acid biosynthesis metabolic pathway and CAZymes. Water Research, 2020, 170, 115309.	11.3	88
33	Organic compounds evolution and sludge properties variation along partial nitritation and subsequent anammox processes treating reject water. Water Research, 2020, 184, 116197.	11.3	88
34	Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion. Waste Management, 2019, 88, 309-318.	7.4	86
35	Role of redox-active biochar with distinctive electrochemical properties to promote methane production in anaerobic digestion of waste activated sludge. Journal of Cleaner Production, 2021, 278, 123212.	9.3	83
36	Medium-Chain fatty acids and long-chain alcohols production from waste activated sludge via two-stage anaerobic fermentation. Water Research, 2020, 186, 116381.	11.3	82

#	Article	IF	CITATIONS
37	The influence of organic-binding metals on the biogas conversion of sewage sludge. Water Research, 2017, 126, 329-341.	11.3	81
38	Coadsorption behavior and mechanism of ciprofloxacin and Cu(II) on graphene hydrogel wetted surface. Chemical Engineering Journal, 2020, 380, 122387.	12.7	81
39	\hat{I}° -Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity. Chemosphere, 2019, 237, 124417.	8.2	80
40	Mesoporous amorphous FePO4 nanosphere@Graphene as a faradic electrode in capacitive deionization for high-capacity and fast removal of NaCl from water. Chemical Engineering Journal, 2019, 370, 938-943.	12.7	80
41	The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion. Science of the Total Environment, 2019, 646, 1376-1384.	8.0	72
42	Rheology evolution of sludge through high-solid anaerobic digestion. Bioresource Technology, 2014, 174, 6-10.	9.6	71
43	New insights into the effect of sludge proteins on the hydrophilic/hydrophobic properties that improve sludge dewaterability during anaerobic digestion. Water Research, 2020, 173, 115503.	11.3	68
44	Microplastics Mitigation in Sewage Sludge through Pyrolysis: The Role of Pyrolysis Temperature. Environmental Science and Technology Letters, 2020, 7, 961-967.	8.7	67
45	Impact of roxithromycin on waste activated sludge anaerobic digestion: Methane production, carbon transformation and antibiotic resistance genes. Science of the Total Environment, 2020, 703, 134899.	8.0	65
46	Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system. Bioresource Technology, 2014, 153, 55-61.	9.6	63
47	Emerging Trends and Prospects for Municipal Wastewater Management in China. ACS ES&T Engineering, 2022, 2, 323-336.	7.6	63
48	Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge. Water Research, 2017, 115, 220-228.	11.3	62
49	Enhancing acidogenic fermentation of waste activated sludge via isoelectric-point pretreatment: Insights from physical structure and interfacial thermodynamics. Water Research, 2020, 185, 116237.	11.3	62
50	Microbial responses and metabolic pathways reveal the recovery mechanism of an anaerobic digestion system subjected to progressive inhibition by ammonia. Chemical Engineering Journal, 2018, 350, 312-323.	12.7	61
51	Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer. Renewable and Sustainable Energy Reviews, 2021, 148, 111367.	16.4	61
52	Enhancing methanogenic fermentation of waste activated sludge via isoelectric-point pretreatment: Insights from interfacial thermodynamics, electron transfer and microbial community. Water Research, 2021, 197, 117072.	11.3	59
53	Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge. Scientific Reports, 2016, 6, 28193.	3.3	58
54	Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement. Water Research, 2017, 116, 34-43.	11.3	57

#	Article	IF	CITATIONS
55	PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: Denitrification performance, microbial community structure evolution and key denitrifying bacteria. Chemosphere, 2018, 197, 96-104.	8.2	56
56	Effect of aromatic repolymerization of humic acid-like fraction on digestate phytotoxicity reduction during high-solid anaerobic digestion for stabilization treatment of sewage sludge. Water Research, 2018, 143, 436-444.	11.3	56
57	A new method for the simultaneous enhancement of methane yield and reduction of hydrogen sulfide production in the anaerobic digestion of waste activated sludge. Bioresource Technology, 2017, 243, 914-921.	9.6	55
58	Rotating Magnetic Field-Assisted Adsorption Mechanism of Pollutants on Mechanically Strong Sodium Alginate/Graphene/ <scp>I</scp> -Cysteine Beads in Batch and Fixed-Bed Column Systems. Environmental Science & Dechange (2018, 52, 13925-13934).	10.0	55
59	Evaluation the impact of polystyrene micro and nanoplastics on the methane generation by anaerobic digestion. Ecotoxicology and Environmental Safety, 2020, 205, 111095.	6.0	53
60	Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge. Bioresource Technology, 2017, 241, 95-102.	9.6	52
61	Development of nano-CaO2-coated clinoptilolite for enhanced phosphorus adsorption and simultaneous removal of COD and nitrogen from sewage. Chemical Engineering Journal, 2017, 328, 35-43.	12.7	51
62	Performance and Mechanism of Fe ₃ O ₄ Improving Biotransformation of Waste Activated Sludge into Liquid High-Value Products. Environmental Science & Enviro	10.0	51
63	A novel green composite conductive material enhancing anaerobic digestion of waste activated sludge via improving electron transfer and metabolic activity. Water Research, 2022, 220, 118687.	11.3	51
64	Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: Effect of temperature. Journal of Biotechnology, 2012, 159, 27-31.	3.8	49
65	Partition and fate analysis of fluoroquinolones in sewage sludge during anaerobic digestion with thermal hydrolysis pretreatment. Science of the Total Environment, 2017, 581-582, 715-721.	8.0	49
66	Reforming sewage sludge pyrolysis volatile with Fe-embedded char: Minimization of liquid product yield. Waste Management, 2018, 73, 464-475.	7.4	48
67	Particle size reduction of rice straw enhances methane production under anaerobic digestion. Bioresource Technology, 2019, 293, 122043.	9.6	48
68	Rhamnolipid pretreatment enhances methane production from two-phase anaerobic digestion of waste activated sludge. Water Research, 2021, 194, 116909.	11.3	47
69	Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal. Scientific Reports, 2015, 5, 11675.	3.3	46
70	Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation. Water Research, 2020, 185 , 116273 .	11.3	44
71	Hydrothermal treatment of erythromycin fermentation residue: Harmless performance and bioresource properties. Resources, Conservation and Recycling, 2020, 161, 104952.	10.8	44
72	Unraveling the water states of waste-activated sludge through transverse spin-spin relaxation time of low-field NMR. Water Research, 2019, 155, 266-274.	11.3	43

#	Article	IF	CITATIONS
73	Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content. Chemosphere, 2019, 219, 383-389.	8.2	43
74	High-solid anaerobic digestion of sewage sludge: achievements and perspectives. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	43
75	Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater. Scientific Reports, 2015, 5, 12331.	3.3	42
76	Mechanism insights into bio-floc bound water transformation based on synchrotron X-ray computed microtomography and viscoelastic acoustic response analysis. Water Research, 2018, 142, 480-489.	11.3	42
77	A review on application of single and composite conductive additives for anaerobic digestion: Advances, challenges and prospects. Resources, Conservation and Recycling, 2021, 174, 105844.	10.8	42
78	Effect of anaerobic digestion on sequential pyrolysis kinetics of organic solid wastes using thermogravimetric analysis and distributed activation energy model. Bioresource Technology, 2017, 227, 297-307.	9.6	41
79	Post-thermal hydrolysis and centrate recirculation for enhancing anaerobic digestion of sewage sludge. Waste Management, 2019, 92, 39-48.	7.4	41
80	The three-stage effect of hydrothermal treatment on sludge physical-chemical properties: Evolution of polymeric substances and their interaction with physicochemical properties. Water Research, 2022, 211, 118043.	11.3	41
81	Two-phase high solid anaerobic digestion with dewatered sludge: Improved volatile solid degradation and specific methane generation by temperature and pH regulation. Bioresource Technology, 2018, 259, 253-258.	9.6	40
82	Transcriptomics Uncovers the Response of Anammox Bacteria to Dissolved Oxygen Inhibition and the Subsequent Recovery Mechanism. Environmental Science & Environmental Science & 2020, 54, 14674-14685.	10.0	40
83	Zinc Spinel Ferrite Nanoparticles as a Pseudocapacitive Electrode with Ultrahigh Desalination Capacity and Long-Term Stability. Environmental Science and Technology Letters, 2020, 7, 118-125.	8.7	40
84	Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in a conventional wastewater treatment plant (WWTP) in Shanghai: Seasonal variations and potential sources. Science of the Total Environment, 2014, 487, 342-349.	8.0	39
85	Methanogenic population dynamics regulated by bacterial community responses to protein-rich organic wastes in a high solid anaerobic digester. Chemical Engineering Journal, 2017, 317, 444-453.	12.7	39
86	Development of montmorillonite-supported nano CaO2 for enhanced dewatering of waste-activated sludge by synergistic effects of filtration aid and peroxidation. Chemical Engineering Journal, 2017, 307, 418-426.	12.7	39
87	Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge. Chemosphere, 2019, 232, 45-53.	8.2	39
88	Nano-/Micro-confined Water in Graphene Hydrogel as Superadsorbents for Water Purification. Nano-Micro Letters, 2020, 12, 2.	27.0	39
89	Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example. Waste Management, 2017, 69, 360-364.	7.4	39
90	A review: factors affecting excess sludge anaerobic digestion for volatile fatty acids production. Water Science and Technology, 2015, 72, 678-688.	2.5	38

#	Article	IF	Citations
91	Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal. Journal of Hazardous Materials, 2017, 321, 132-145.	12.4	38
92	Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms. Water Research, 2020, 169, 115208.	11.3	38
93	Effects of humic matter on the anaerobic digestion of sewage sludge: New insights from sludge structure. Chemosphere, 2020, 243, 125421.	8.2	38
94	Microbial production of lactic acid from food waste: Latest advances, limits, and perspectives. Bioresource Technology, 2022, 345, 126052.	9.6	38
95	Decrease the effective temperature of hydrothermal treatment for sewage sludge deep dewatering: Mechanistic of tannic acid aided. Water Research, 2022, 217, 118450.	11.3	37
96	High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH. Scientific Reports, 2016, 6, 35194.	3.3	36
97	Hyperthermophilic pretreatment composting to produce high quality sludge compost with superior humification degree and nitrogen retention. Chemical Engineering Journal, 2022, 429, 132247.	12.7	36
98	Characterizing the sludge moisture distribution during anaerobic digestion process through various approaches. Science of the Total Environment, 2019, 675, 184-191.	8.0	35
99	Effects of temperature variation on wastewater sludge electro-dewatering. Journal of Cleaner Production, 2019, 214, 873-880.	9.3	34
100	Influential mechanism of water occurrence states of waste-activated sludge: Potential linkage between water-holding capacity and molecular compositions of EPS. Water Research, 2022, 213, 118169.	11.3	34
101	Changes in physicochemical and leachate characteristics of microplastics during hydrothermal treatment of sewage sludge. Water Research, 2022, 222, 118876.	11.3	33
102	Exploring the potential of iTRAQ proteomics for tracking the transformation of extracellular proteins from enzyme-disintegrated waste activated sludge. Bioresource Technology, 2017, 225, 75-83.	9.6	32
103	Enhancing Anaerobic Digestion of Waste Activated Sludge by Solid–Liquid Separation via Isoelectric Point Pretreatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 14774-14784.	6.7	32
104	Spatial Configuration of Extracellular Organic Substances Responsible for the Biogas Conversion of Sewage Sludge. ACS Sustainable Chemistry and Engineering, 2018, 6, 8308-8316.	6.7	32
105	Cation exchange resin pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. Water Research, 2022, 212, 118130.	11.3	32
106	Methane-rich biogas production from waste-activated sludge with the addition of ferric chloride under a thermophilic anaerobic digestion system. RSC Advances, 2015, 5, 38538-38546.	3.6	31
107	Ferroferric oxide promotes metabolism in Anaerolineae other than microbial syntrophy in anaerobic methanogenesis of antibiotic fermentation residue. Science of the Total Environment, 2021, 758, 143601.	8.0	31
108	Degradation of Extracellular Polymeric Substances (EPS) in Anaerobic Digestion of Dewatered Sludge. Procedia Environmental Sciences, 2013, 18, 515-521.	1.4	30

#	Article	IF	CITATIONS
109	Thermal analysis and 454 pyrosequencing to evaluate the performance and mechanisms for deep stabilization and reduction of high-solid anaerobically digested sludge using biodrying process. Bioresource Technology, 2015, 175, 245-253.	9.6	30
110	The potential exposure and transmission risk of SARS-CoV-2 through sludge treatment and disposal. Resources, Conservation and Recycling, 2020, 162, 105043.	10.8	30
111	Impact of application of heat-activated persulfate oxidation treated erythromycin fermentation residue as a soil amendment: Soil chemical properties and antibiotic resistance. Science of the Total Environment, 2020, 736, 139668.	8.0	30
112	Two-dimensional FTIR correlation spectroscopy reveals chemical changes in dissolved organic matter during the biodrying process of raw sludge and anaerobically digested sludge. RSC Advances, 2015, 5, 82087-82096.	3.6	29
113	Pyrolysis of the mixture of MSWI fly ash and sewage sludge for co-disposal: Effect of ferrous/ferric sulfate additives. Waste Management, 2018, 75, 340-351.	7.4	29
114	Influential mechanism of water occurrence states of waste-activated sludge: specifically focusing on the roles of EPS micro-spatial distribution and cation-dominated interfacial properties. Water Research, 2021, 202, 117461.	11.3	29
115	Thermogravimetry–Fourier transform infrared spectrometry–mass spectrometry technique to evaluate the effect of anaerobic digestion on gaseous products of sewage sludge sequential pyrolysis. Journal of Analytical and Applied Pyrolysis, 2017, 126, 288-297.	5.5	29
116	Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants. Water Research, 2022, 211, 118036.	11.3	29
117	Polyethylene terephthalate microplastic fibers increase the release of extracellular antibiotic resistance genes during sewage sludge anaerobic digestion. Water Research, 2022, 217, 118426.	11.3	29
118	<i>In Situ</i> Reforming of the Volatile by Char during Sewage Sludge Pyrolysis. Energy & Ene	5.1	28
119	Biomethane production by typical straw anaerobic digestion: Deep insights of material compositions and surface properties. Bioresource Technology, 2020, 313, 123643.	9.6	28
120	Revealing the Mechanism of Biochar Enhancing the Production of Medium Chain Fatty Acids from Waste Activated Sludge Alkaline Fermentation Liquor. ACS ES&T Water, 2021, 1, 1014-1024.	4.6	28
121	Enhanced sludge dewaterability via ozonation catalyzed by sludge derived biochar loaded with MnFe2O4: Performance and mechanism investigation. Journal of Cleaner Production, 2021, 323, 129182.	9.3	28
122	Effects of stepwise thermal hydrolysis and solid-liquid separation on three different sludge organic matter solubilization and biodegradability. Bioresource Technology, 2019, 290, 121753.	9.6	27
123	Novel CaO2 beads used in the anaerobic fermentation of iron-rich sludge for simultaneous short-chain fatty acids and phosphorus recovery under ambient conditions. Bioresource Technology, 2021, 322, 124553.	9.6	27
124	The evaluation of GHG emissions from Shanghai municipal wastewater treatment plants based on IPCC and operational data integrated methods (ODIM). Science of the Total Environment, 2021, 797, 148967.	8.0	27
125	Different sizes of polystyrene microplastics induced distinct microbial responses of anaerobic granular sludge. Water Research, 2022, 220, 118607.	11.3	27
126	Earthworm eco-physiological characteristics and quantification of earthworm feeding in vermifiltration system for sewage sludge stabilization using stable isotopic natural abundance. Journal of Hazardous Materials, 2014, 276, 353-361.	12.4	26

#	Article	IF	Citations
127	Development of sludge-derived mesoporous material with loaded nano CaO2 and doped Fe for re-utilization of dewatered waste-activated sludge as dewatering aids. Chemical Engineering Journal, 2018, 335, 161-168.	12.7	26
128	Multiple selection of resistance genes in arable soil amended with cephalosporin fermentation residue. Soil Biology and Biochemistry, 2019, 136, 107538.	8.8	26
129	Pretreatment-promoted sludge fermentation liquor improves biological nitrogen removal: Molecular insight into the role of dissolved organic matter. Bioresource Technology, 2019, 293, 122082.	9.6	26
130	Sludge age impacted the distribution, occurrence state and structure of organic compounds in activated sludge and affected the anaerobic degradability. Chemical Engineering Journal, 2020, 384, 123261.	12.7	26
131	Aging microplastics in wastewater pipeline networks and treatment processes: Physicochemical characteristics and Cd adsorption. Science of the Total Environment, 2021, 797, 148940.	8.0	26
132	Treatment of printing and dyeing wastewater using MBBR followed by membrane separation process. Desalination and Water Treatment, 2014, 52, 4562-4567.	1.0	25
133	Occurrence of hexabromocyclododecane (HBCD) in sewage sludge from Shanghai: Implications for source and environmental burden. Chemosphere, 2015, 118, 207-212.	8.2	25
134	Comparing two start up strategies and the effect of temperature fluctuations on the performance of mainstream anammox reactors. Chemosphere, 2018, 209, 632-639.	8.2	25
135	Free-conditioning dewatering of sewage sludge through in situ propane hydrate formation. Water Research, 2018, 145, 464-472.	11.3	25
136	Dosing effect of nano zero valent iron (NZVI) on the dark hydrogen fermentation performance via lake algae and food waste co-digestion. Energy Reports, 2020, 6, 3192-3199.	5.1	25
137	Assessment of Heterotrophic Growth Supported by Soluble Microbial Products in Anammox Biofilm using Multidimensional Modeling. Scientific Reports, 2016, 6, 27576.	3.3	24
138	Mechanism analysis to improve sludge dewaterability during anaerobic digestion based on moisture distribution. Chemosphere, 2019, 227, 247-255.	8.2	24
139	Variations of heavy metals, nutrients, POPs and particle size distribution during "sludge anaerobic digestion-solar drying-land utilization process― Case study in China. Science of the Total Environment, 2021, 801, 149609.	8.0	24
140	Recognition of the key chemical constituents of sewage sludge for biogas production. RSC Advances, 2017, 7, 2033-2037.	3.6	23
141	Sustainable disposal of excess sludge: Post-thermal hydrolysis for anaerobically digested sludge. Journal of Cleaner Production, 2021, 321, 128893.	9.3	23
142	Coconut shell ash enhances short-chain fatty acids production from anaerobic algae fermentation. Bioresource Technology, 2021, 338, 125494.	9.6	23
143	Interactions between virus surrogates and sewage sludge vary by viral analyte: Recovery, persistence, and sorption. Water Research, 2022, 210, 117995.	11.3	23
144	The synthetic effect on volatile fatty acid disinhibition and methane production enhancement by dosing FeCl ₃ in a sludge thermophilic anaerobic digestion system. RSC Advances, 2016, 6, 21090-21098.	3.6	22

#	Article	IF	Citations
145	Effects of free nitrous acid and nitrite on two-phase anaerobic digestion of waste activated sludge: A preliminary study. Science of the Total Environment, 2019, 654, 1064-1071.	8.0	22
146	Integrating multi-state and multi-phase treatment for anaerobic sludge digestion to enhance recovery of bio-energy. Science of the Total Environment, 2020, 698, 134196.	8.0	22
147	New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: Conversion pathway of volatile sulphur compounds. Chemosphere, 2020, 244, 125466.	8.2	22
148	Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Bioresource Technology, 2020, 318, 124271.	9.6	22
149	Effect of gentamicin mycelial residues disintegration by microwave-alkaline pretreatment on methane production and gentamicin degradation during anaerobic digestion. Chemical Engineering Journal, 2021, 414, 128790.	12.7	22
150	Thermal Hydrolysis Pretreatment-Anaerobic Digestion Promotes Plant-Growth Biostimulants Production from Sewage Sludge by Upregulating Aromatic Amino Acids Transformation and Quinones Supply. Environmental Science & Echnology, 2022, 56, 1938-1950.	10.0	22
151	Contributions of MOF-808 to methane production from anaerobic digestion of waste activated sludge. Water Research, 2022, 220, 118653.	11.3	22
152	Development of polymeric iron/zirconium-pillared clinoptilolite for simultaneous removal of multiple inorganic contaminants from wastewater. Chemical Engineering Journal, 2018, 347, 819-827.	12.7	21
153	Alkaline-thermal pretreatment of spectinomycin mycelial residues: Insights on anaerobic biodegradability and the fate of antibiotic resistance genes. Chemosphere, 2020, 261, 127821.	8.2	21
154	Pretreatment using UV combined with CaO2 for the anaerobic digestion of waste activated sludge: Mechanistic modeling for attenuation of trace organic contaminants. Journal of Hazardous Materials, 2021, 402, 123484.	12.4	20
155	Targeted clean extraction of phosphorus from waste activated sludge: From a new perspective of phosphorus occurrence states to an innovative approach through acidic cation exchange resin. Water Research, 2022, 215, 118190.	11.3	20
156	Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production. Environmental Technology (United Kingdom), 2016, 37, 2935-2944.	2.2	19
157	A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge. Journal of Environmental Sciences, 2016, 43, 159-168.	6.1	19
158	Effect of temperature on tertiary nitrogen removal from municipal wastewater in a PHBV/PLA-supported denitrification system. Environmental Science and Pollution Research, 2019, 26, 26893-26899.	5.3	19
159	Novel perspective for urban water resource management: 5R generation. Frontiers of Environmental Science and Engineering, $2021, 15, 1$.	6.0	19
160	Deciphering the internal driving mechanism of microbial community for carbon conversion and nitrogen fixation during food waste composting with multifunctional microbial inoculation. Bioresource Technology, 2022, 360, 127623.	9.6	19
161	Evaluation of Biogas Performance and Process Stability from Food, Kitchen, and Fruit/Vegetable Waste by Mono-, Co-, and Tridigestion. Energy & Samp; Fuels, 2020, 34, 12734-12742.	5.1	18
162	Calcium peroxide significantly enhances volatile solids destruction in aerobic sludge digestion through improving sludge biodegradability. Bioresource Technology, 2022, 346, 126655.	9.6	18

#	Article	IF	CITATIONS
163	Scavenging ROS to Alleviate Acute Liver Injury by ZnOâ€NiO@COOH. Advanced Science, 2022, 9, e2103982.	11.2	18
164	Effect of Magnet-Fe3O4 composite structure on methane production during anaerobic sludge digestion: Establishment of direct interspecies electron transfer. Renewable Energy, 2022, 188, 52-60.	8.9	18
165	Hygienic treatment and energy recovery of dead animals by high solid co-digestion with vinasse under mesophilic condition: feasibility study. Journal of Hazardous Materials, 2015, 297, 320-328.	12.4	17
166	Model-based assessment of estrogen removal by nitrifying activated sludge. Chemosphere, 2018, 197, 430-437.	8.2	17
167	Simultaneous in situ nutrient recovery and sustainable wastewater purification based on metal anionand cation-targeted selective adsorbents. Journal of Hazardous Materials, 2020, 382, 121039.	12.4	17
168	Dosage effects of lincomycin mycelial residues on lincomycin resistance genes and soil microbial communities. Environmental Pollution, 2020, 256, 113392.	7.5	17
169	Effect of nitrite addition on the two-phase anaerobic digestion of waste activated sludge: Optimization of the acidogenic phase and influence mechanisms. Environmental Pollution, 2020, 261, 114085.	7.5	17
170	Alkaline-thermally treated penicillin V mycelial residue amendment improved the soil properties without triggering antibiotic resistance. Waste Management, 2020, 105 , $248-255$.	7.4	17
171	Secondary acidogenic fermentation of waste activated sludge via voltage supplementation: Insights from sludge structure and enzymes activity. Science of the Total Environment, 2021, 797, 149161.	8.0	17
172	Simultaneous enhancing phosphorus recovery and volatile fatty acids production during anaerobic fermentation of sewage sludge with peroxydisulfate pre-oxidation. Bioresource Technology, 2022, 357, 127164.	9.6	17
173	Coupling anammox and feammox via polymeric ferric sulfate: An efficient and aeration-saving way for nitrogen removal. Journal of Cleaner Production, 2022, 355, 131788.	9.3	17
174	Nitrogen loss reduction by adding KH2PO4-K2HPO4 buffer solution during composting of sewage sludge. Bioresource Technology, 2018, 264, 116-122.	9.6	16
175	Operation of pilot-scale nitrification-anammox reactors for the treatment of reject-water produced from the anaerobic digestion of thermal hydrolysis-treated sludge. Bioresource Technology, 2020, 314, 123717.	9.6	16
176	Erythromycin stimulates rather than inhibits methane production in anaerobic digestion of antibiotic fermentation dregs. Science of the Total Environment, 2022, 807, 151007.	8.0	16
177	Implications for mitigation of antibiotic resistance: Differential response of intracellular and extracellular antibiotic resistance genes to sludge fermentation coupled with thermal hydrolysis. Water Research, 2022, 209, 117876.	11.3	16
178	Sludge treatment and resource recovery towards carbon neutrality in China: current status and future perspective. Blue-Green Systems, 2021, 3, 119-127.	2.0	16
179	A new biological process for short-chain fatty acid generation from waste activated sludge improved by Clostridiales enhancement. Environmental Science and Pollution Research, 2016, 23, 23972-23982.	5.3	15
180	Ecosystem activation system (EAS) technology for remediation of eutrophic freshwater. Scientific Reports, 2017, 7, 4818.	3.3	15

#	Article	IF	CITATIONS
181	Sludge-to-energy approaches based on pathways that couple pyrolysis with anaerobic digestion (thermal hydrolysis pre/post-treatment): Energy efficiency assessment and pyrolysis kinetics analysis. Energy, 2020, 190, 116240.	8.8	15
182	The transformation of phosphorus fractions in high-solid sludge by anaerobic digestion combined with the high temperature thermal hydrolysis process. Bioresource Technology, 2020, 309, 123314.	9.6	15
183	Effects of NaCl and phenol on anammox performance in mainstream reactors with low nitrogen concentration and low temperature. Biochemical Engineering Journal, 2019, 147, 72-80.	3.6	14
184	Partial nitritation with aerobic duration control of carbon-captured blackwater: Process operation and model-based evaluation. Chemical Engineering Journal, 2020, 401, 126060.	12.7	14
185	High Proton Conductivity of MOF-808 Promotes Methane Production in Anaerobic Digestion. ACS Sustainable Chemistry and Engineering, 2022, 10, 1419-1429.	6.7	14
186	Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling. Chemosphere, 2015, 139, 334-339.	8.2	13
187	Anaerobic digestion of sludge differing in inorganic solids content: performance comparison and the effect of inorganic suspended solids content on degradation. Water Science and Technology, 2016, 74, 2152-2161.	2.5	13
188	New insight into volatile sulfur compounds conversion in anaerobic digestion of excess sludge: Influence of free ammonia nitrogen and thermal hydrolysis pretreatment. Journal of Cleaner Production, 2020, 277, 123366.	9.3	13
189	Investigating antibiotics, antibiotic resistance genes in soil, groundwater and vegetables in relation to agricultural field - Applicated with lincomycin mycelial residues compost. Science of the Total Environment, 2021, 777, 146066.	8.0	13
190	Removal of personal care products in greywater using membrane bioreactor and constructed wetland methods. Science of the Total Environment, 2021, 797, 148773.	8.0	13
191	Change of thermal drying characteristics for dewatered sewage sludge based on anaerobic digestion. Journal of Thermal Analysis and Calorimetry, 2013, 114, 307-312.	3.6	12
192	Effect of reusing the advanced-softened, silica-rich, oilfield-produced water (ASOW) on finned tubes in steam-injection boiler. Desalination, 2015, 372, 17-25.	8.2	12
193	Anaerobic digestion of spectinomycin mycelial residues pretreated by thermal hydrolysis: removal of spectinomycin and enhancement of biogas production. Environmental Science and Pollution Research, 2020, 27, 39297-39307.	5.3	12
194	The release of organic matter, nitrogen, phosphorus and heavy metals from erythromycin fermentation residue under heat-activated persulfate oxidation conditioning. Science of the Total Environment, 2020, 724, 138349.	8.0	12
195	Integrated anaerobic digestion and CO2 sequestration for energy recovery from waste activated sludge by calcium addition: Timing matters. Energy, 2020, 199, 117421.	8.8	12
196	Corncob ash boosts fermentative hydrogen production from waste activated sludge. Science of the Total Environment, 2022, 807, 151064.	8.0	12
197	Direct lactic acid production from household food waste by lactic acid bacteria. Science of the Total Environment, 2022, 840, 156479.	8.0	12
198	Characterizing and Exploring the Formation Mechanism of Salt Deposition by Reusing Advanced-softened, Silica-rich, Oilfield-produced Water (ASOW) in Superheated Steam Pipeline. Scientific Reports, 2015, 5, 17274.	3.3	11

#	Article	IF	CITATIONS
199	Excess sludge and herbaceous plant co-digestion for volatile fatty acids generation improved by protein and cellulose conversion enhancement. Environmental Science and Pollution Research, 2016, 23, 1492-1504.	5.3	11
200	Responses of methane production, microbial community and antibiotic resistance genes to the mixing ratio of gentamicin mycelial residues and wheat straw in anaerobic co-digestion process. Science of the Total Environment, 2022, 806, 150488.	8.0	11
201	Enhancement of sludge dewaterability via the thermal hydrolysis anaerobic digestion mechanism based on moisture and organic matter interactions. Science of the Total Environment, 2021, 798, 149229.	8.0	11
202	Novel micro-granular sludge process for highly efficient treatment of low-strength and low C/N ratio municipal wastewater. Chemosphere, 2022, 287, 132322.	8.2	11
203	Novel anaerobic digestion of waste activated sludge via isoelectric-point pretreatment: Ultra-short solids retention time and high methane yield. Water Research, 2022, 220, 118657.	11.3	11
204	Modelling Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactor with Ethanol as Electron Donor. Scientific Reports, 2016, 6, 35312.	3.3	10
205	Performance and microbial ecology of a nitritation sequencing batch reactor treating high-strength ammonia wastewater. Scientific Reports, 2016, 6, 35693.	3.3	10
206	Medium-chain fatty acids production from carbohydrates-rich wastewater through two-stage yeast biofilm processes without external electron donor addition: Biofilm development and pH impact. Science of the Total Environment, 2022, 828, 154428.	8.0	10
207	Influential mechanism of water occurrence states of waste-activated sludge: Over-focused significance of cell lysis to bound water reduction. Water Research, 2022, 221, 118737.	11.3	10
208	Optimization of a digested sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for the photo-Fenton reaction. Chinese Journal of Catalysis, 2016, 37, 735-742.	14.0	9
209	Molecular characteristics of the refractory organic matter in the anaerobic and aerobic digestates of sewage sludge. RSC Advances, 2018, 8, 33138-33148.	3.6	9
210	Mechanism insights into polyhydroxyalkanoate-regulated denitrification from the perspective of pericytoplasmic nitrate reductase expression. Science of the Total Environment, 2021, 754, 142083.	8.0	9
211	Environmentally-friendly dewatering of sewage sludge: A novel strategy based on amphiphilic phase-transfer induced by recoverable organic solvent. Chemical Engineering Journal, 2021, 409, 128212.	12.7	9
212	Defining interfacial abiotic driving forces for enhancing anaerobic biological treatment of organic solid waste. Resources, Conservation and Recycling, 2021, 169, 105553.	10.8	9
213	A new approach to recycling cephalosporin fermentation residue into plant biostimulants. Journal of Hazardous Materials, 2021, 413, 125393.	12.4	9
214	Enhancing short-term ethanol-type fermentation of waste activated sludge by adding saccharomycetes and the implications for bioenergy and resource recovery. Journal of Environmental Sciences, 2022, 113, 179-189.	6.1	9
215	Exploring the bioaccessibility of polybrominated diphenyl ethers (PBDEs) in sewage sludge. Environmental Pollution, 2015, 207, 1-5.	7.5	8
216	Evaluating the biogas conversion potential of sewage sludge by surface site density of sludge particulate. Chemical Engineering Journal, 2017, 327, 1184-1191.	12.7	8

#	Article	IF	Citations
217	Modelling of simultaneous nitrogen and thiocyanate removal through coupling thiocyanate-based denitrification with anaerobic ammonium oxidation. Environmental Pollution, 2019, 253, 974-980.	7.5	8
218	Preparation of activated sewage sludge char for low temperature De-NO and its CO emission inhibition. Chemosphere, 2020, 251, 126330.	8.2	8
219	Micron-sized silica particles in wastewater influenced the distribution of organic matters in sludge and their anaerobic degradation. Journal of Hazardous Materials, 2020, 393, 122340.	12.4	8
220	Effects of sludge age on anaerobic acidification of waste activated sludge: Volatile fatty acids production and phosphorus release. Journal of Environmental Sciences, 2021, 105, 11-21.	6.1	8
221	Enhanced depletion of antibiotics and accelerated estabilization of dissolved organic matter by hydrothermal pretreatment during composting of oxytetracycline fermentation residue. Bioresource Technology, 2021, 339, 125618.	9.6	8
222	High concentration powder carrier bio-fluidized bed process: A new perspective for domestic wastewater treatment. Bioresource Technology, 2022, 351, 127015.	9.6	8
223	Linking nitrification characteristic and microbial community structures in integrated fixed film activated sludge reactor by high-throughput sequencing. Water Science and Technology, 2016, 74, 1354-1364.	2.5	7
224	Micro-aerobic digestion of high-solid anaerobically digested sludge: further stabilization, microbial dynamics and phytotoxicity reduction. RSC Advances, 2016, 6, 76748-76758.	3.6	7
225	Enhancing immobilization of arsenic in groundwater: A model-based evaluation. Journal of Cleaner Production, 2017, 166, 449-457.	9.3	7
226	Kinetic assessment of simultaneous removal of arsenite, chlorate and nitrate under autotrophic and mixotrophic conditions. Science of the Total Environment, 2018, 628-629, 85-93.	8.0	7
227	Variations of physical and chemical properties in relation to erythromycin mycelial dreg dewaterability under heat-activated persulfate oxidation conditioning. Science of the Total Environment, 2019, 687, 2-9.	8.0	7
228	Design of facile technology for the efficient removal of hydroxypropyl guar gum from fracturing fluid. PLoS ONE, 2021, 16, e0247948.	2.5	7
229	Mechanism insights into liquid polarity regulation for enhanced dewatering of waste-activated sludge: Specifically focusing on the solid-liquid affinity reduction depending on phase-transfer and conformational features of amphiphilic protein. Water Research, 2022, 221, 118793.	11.3	7
230	Quantitative and qualitative validations of a sonication-based DNA extraction approach for PCR-based molecular biological analyses. Analytical Biochemistry, 2016, 501, 44-46.	2.4	6
231	Enhancement of anaerobic digestive efficiency by the use of exchange resin to remove cations in sewage sludge. Desalination and Water Treatment, 2016, 57, 6202-6208.	1.0	6
232	Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation. Scientific Reports, 2017, 7, 45609.	3.3	6
233	Coupling self-sustaining air flotation screening with conventional CSTR enhances anaerobic biodegradability of corn stover. Bioresource Technology, 2020, 310, 123417.	9.6	6
234	New insights into the evaluation of anaerobic properties of sludge: Biodegradability and stabilization. Journal of Environmental Sciences, 2021, 100, 158-166.	6.1	6

#	Article	IF	CITATIONS
235	Optimizing granular anammox retention via hydrocycloning during two-stage deammonification of high-solid sludge anaerobic digester supernatant. Science of the Total Environment, 2021, 791, 148048.	8.0	6
236	Insight into the evolution of antibiotic resistance genes and microbial community during spiramycin fermentation residue composting process after thermally activated peroxydisulfate pretreatment. Journal of Hazardous Materials, 2022, 424, 127287.	12.4	6
237	Zero valent iron greatly improves sludge destruction and nitrogen removal in aerobic sludge digestion. Chemical Engineering Journal, 2022, 433, 134459.	12.7	6
238	Characterizing and exploring the mechanism of formation of corrosion scales by reusing advancedâ€softened, silicaâ€rich, oilfieldâ€produced water (<scp>ASOW</scp>) in a steamâ€injection boiler. Journal of Chemical Technology and Biotechnology, 2017, 92, 382-390.	3.2	5
239	Designing an in situ remediation strategy for polluted surface water bodies through the specific regulation of microbial community. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	5
240	Full-scale semi-centralized wastewater treatment facilities for resource recovery: operation, problems and resolutions. Water Science and Technology, 2020, 82, 303-314.	2.5	5
241	Developing "precise-acting―strategies for improving anaerobic methanogenesis of organic waste: Insights from the electron transfer system of syntrophic partners. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	5
242	A novel application of dissolved ozone flotation on sewage sludge thickening: Performance and mechanism investigation. Science of the Total Environment, 2022, 842, 156874.	8.0	5
243	Performance and microbial communities of a batch anaerobic reactor treating liquid and high-solid sludge at thermophilic conditions. RSC Advances, 2016, 6, 99524-99531.	3.6	4
244	Nitrous Oxide Production in Co-Versus Counter-Diffusion Nitrifying Biofilms. Scientific Reports, 2016, 6, 28880.	3.3	4
245	The transition temperature (42°C) from mesophilic to thermophilic micro-organisms enhances biomethane potential of corn stover. Science of the Total Environment, 2021, 759, 143549.	8.0	4
246	A novel thermal pretreatment method called air frying improves the enzymatic saccharification effect of straw. Science of the Total Environment, 2021, 790, 148191.	8.0	4
247	Highly efficient solid-liquid separation of anaerobically digested liquor of food waste: Conditioning approach screening and mechanistic analysis. Science of the Total Environment, 2022, 811, 152416.	8.0	4
248	Insights into multisource sludge distributed in the Yangtze River basin, China: Characteristics, correlation, treatment and disposal. Journal of Environmental Sciences, 2023, 126, 321-332.	6.1	4
249	Comparison of anaerobic phosphorus release from activated sludge with three carbon sources. Water Science and Technology, 2021, 83, 1327-1334.	2.5	3
250	Unveiling the distinctive role of titanium dioxide nanoparticles in aerobic sludge digestion. Science of the Total Environment, 2022, 813, 151872.	8.0	3
251	Conditioning of raw sludge and thermally hydrolyzed sludge by ferric salt and cationic polyacrylamide: rheological analysis. Water Science and Technology, 2021, 83, 1566-1577.	2.5	2
252	Research on Ammonia Removal from Reject Water Produced from Anaerobic Digestion of Thermally Hydrolyzed Sludge Through Partial Nitrification—Anammox. Water, Air, and Soil Pollution, 2022, 233, 1.	2.4	2

#	Article	IF	CITATIONS
253	Enhancing simultaneous removal of nitrogen and phosphorus from municipal wastewater by Fe–Cu shavings. Desalination and Water Treatment, 2014, 52, 7422-7428.	1.0	1
254	Mathematical modeling of microbial extracellular electron transfer by electrically active microorganisms. Environmental Science: Water Research and Technology, 2015, 1, 747-752.	2.4	1
255	Characterizing the interactions between humic matter and calcium ions during water softening by cation-exchange resins. RSC Advances, 2016, 6, 93947-93955.	3.6	1
256	Deciphering color for comprehensive utilization of sludge. Resources, Conservation and Recycling, 2020, 153, 104579.	10.8	1
257	A specious relevance between theory and practice: Insights into temperature parameter and multi-phase strategy of anaerobic digestion of straw. Science of the Total Environment, 2021, 753, 142212.	8.0	1
258	Evaluation of a pretreatment method using cation exchange resin to enhance the sludge solubilization and disintegration for improving the efficiency of anaerobic digestion. Desalination and Water Treatment, $0, 1.8$.	1.0	0
259	Effect of a Humus Soil Side-Stream Reactor (HSR) on the Bacterial Characteristics in Enhanced Biological Phosphorus Removal Process. Journal of Chemical Engineering of Japan, 2015, 48, 498-505.	0.6	0