Murugavel Ponnusamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/267276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant and Teratogenic Activities of Formulated Agar Extracted from Brown Seaweed Turbinaria conoides against Zebrafish Larvae. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	1.2	2
2	PIWI‑interacting RNA in cancer: Molecular mechanisms and possible clinical implications (Review). Oncology Reports, 2021, 46, .	2.6	7
3	NFATc3-dependent expression of miR-153-3p promotes mitochondrial fragmentation in cardiac hypertrophy by impairing mitofusin-1 expression. Theranostics, 2020, 10, 553-566.	10.0	32
4	The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nature Cell Biology, 2020, 22, 1319-1331.	10.3	93
5	FOXK transcription factors: Regulation and critical role in cancer. Cancer Letters, 2019, 458, 1-12.	7.2	41
6	Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation, 2019, 139, 2668-2684.	1.6	125
7	Foxo3a-dependent miR-633 regulates chemotherapeutic sensitivity in gastric cancer by targeting Fas-associated death domain. RNA Biology, 2019, 16, 233-248.	3.1	27
8	The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death and Differentiation, 2019, 26, 1299-1315.	11.2	177
9	LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nature Communications, 2018, 9, 29.	12.8	247
10	Understanding the role of non-coding RNA (ncRNA) in stent restenosis. Atherosclerosis, 2018, 272, 153-161.	0.8	51
11	Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases. Cellular and Molecular Life Sciences, 2018, 75, 291-300.	5.4	27
12	A comprehensive review of circRNA: from purification and identification to disease marker potential. PeerJ, 2018, 6, e5503.	2.0	89
13	Overview of G-Protein Coupled Receptor. , 2018, , 1-18.		0
14	Metabotropic GPCRs: TGR5 and P2Y Receptors in Health and Diseases. , 2018, , .		1
15	Noncoding <scp>RNA</scp> s as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovascular Therapeutics, 2018, 36, e12436.	2.5	54
16	Critical role of FOXO3a in carcinogenesis. Molecular Cancer, 2018, 17, 104.	19.2	295
17	Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. International Journal of Biological Sciences, 2018, 14, 1133-1141.	6.4	29
18	The Long Noncoding RNA D63785 Regulates Chemotherapy Sensitivity in Human Gastric Cancer by Targeting miR-422a. Molecular Therapy - Nucleic Acids, 2018, 12, 405-419.	5.1	76

#	Article	IF	CITATIONS
19	The role of K63â€linked polyubiquitination in cardiac hypertrophy. Journal of Cellular and Molecular Medicine, 2018, 22, 4558-4567.	3.6	17
20	Therapeutically Targeting TGR5 and P2Y Receptors. , 2018, , 57-76.		0
21	Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death and Differentiation, 2017, 24, 1111-1120.	11.2	268
22	miRNAs as potential therapeutic targets and diagnostic biomarkers for cardiovascular disease with a particular focus on WO2010091204. Expert Opinion on Therapeutic Patents, 2017, 27, 1021-1029.	5.0	36
23	Effects of mi <scp>RNA</scp> s on myocardial apoptosis by modulating mitochondria related proteins. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 431-440.	1.9	29
24	A FGFR1 inhibitor patent review: progress since 2010. Expert Opinion on Therapeutic Patents, 2017, 27, 439-454.	5.0	8
25	Channelopathies: Application of Natural Products Using Nanotechnology. , 2017, , 73-86.		0
26	PIWI family emerging as a decisive factor of cell fate: An overview. European Journal of Cell Biology, 2017, 96, 746-757.	3.6	44
27	Calcium Signaling: From Physiology to Diseases. , 2017, , .		14
28	Calcium Ion in Biological Systems. , 2017, , 1-14.		1
29	The role of miR-214 in cardiovascular diseases. European Journal of Pharmacology, 2017, 816, 138-145.	3.5	54
30	MiR-485-5p modulates mitochondrial fission through targeting mitochondrial anchored protein ligase in cardiac hypertrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2871-2881.	3.8	45
31	The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer's disease. Reviews in the Neurosciences, 2017, 28, 861-868.	2.9	73
32	Efficient production of recombinant glycoprotein D of herpes simplex virus type 2 in Pichia pastoris and its protective efficacy against viral challenge in mice. Archives of Virology, 2017, 162, 701-711.	2.1	1
33	Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cellular and Molecular Life Sciences, 2017, 74, 1019-1034.	5.4	63
34	The Role of MicroRNA and LncRNA–MicroRNA Interactions in Regulating Ischemic Heart Disease. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 105-111.	2.0	34
35	Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. International Journal of Biological Sciences, 2017, 13, 1497-1506.	6.4	144
36	MicroRNA as a Therapeutic Target in Cardiac Remodeling. BioMed Research International, 2017, 2017, 1-25.	1.9	63

#	Article	IF	CITATIONS
37	Calcium Signalling in Neurological Disorders. , 2017, , 43-60.		2
38	MEF2 signaling and human diseases. Oncotarget, 2017, 8, 112152-112165.	1.8	59
39	Regulation of Calcium in Muscle Physiology. , 2017, , 15-30.		0
40	Regulatory Action of Calcium in Pain Pathway. , 2017, , 31-42.		0
41	Voltage-Dependent Calcium Channels: From Physiology to Diseases. , 2017, , 61-72.		1
42	Enhancer of Zeste Homolog 2 Inhibition Attenuates Renal Fibrosis by Maintaining Smad7 and Phosphatase and Tensin Homolog Expression. Journal of the American Society of Nephrology: JASN, 2016, 27, 2092-2108.	6.1	148
43	Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney International, 2016, 89, 68-81.	5.2	93
44	Activation of Sirtuin-1 Promotes Renal Fibroblast Activation and Aggravates Renal Fibrogenesis. Journal of Pharmacology and Experimental Therapeutics, 2015, 354, 142-151.	2.5	27
45	Role of Nrf2 in chronic liver disease. World Journal of Gastroenterology, 2014, 20, 13079.	3.3	179
46	Blocking Sirtuin 1 and 2 Inhibits Renal Interstitial Fibroblast Activation and Attenuates Renal Interstitial Fibrosis in Obstructive Nephropathy. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 243-256.	2.5	72
47	Sustained Activation of EGFR Triggers Renal Fibrogenesis after Acute Kidney Injury. American Journal of Pathology, 2013, 183, 160-172.	3.8	99
48	Necrotic renal epithelial cell inhibits renal interstitial fibroblast activation: role of protein tyrosine phosphatase 1B. American Journal of Physiology - Renal Physiology, 2013, 304, F698-F709.	2.7	5
49	Blocking the Class I Histone Deacetylase Ameliorates Renal Fibrosis and Inhibits Renal Fibroblast Activation via Modulating TGF-Beta and EGFR Signaling. PLoS ONE, 2013, 8, e54001.	2.5	128
50	Src Kinase Mediates Renal Interstitial Fibroblast Activation and Proliferation. FASEB Journal, 2013, 27, 1044.2.	0.5	0
51	Phosphodiesterase-5 Inhibitors in Cardioprotection. , 2013, , 439-458.		0
52	Autophagy protects against necrotic renal epithelial cell-induced death of renal interstitial fibroblasts. American Journal of Physiology - Renal Physiology, 2012, 303, F83-F91.	2.7	11
53	Genetic or Pharmacologic Blockade of EGFR Inhibits Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 854-867.	6.1	135
54	Histone deacetylase 1/2 mediates proliferation of renal interstitial fibroblasts and expression of cell cycle proteins. Journal of Cellular Biochemistry, 2011, 112, 2138-2148.	2.6	46

#	Article	IF	CITATIONS
55	Delayed Administration of Suramin Attenuates the Progression of Renal Fibrosis in Obstructive Nephropathy. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 758-766.	2.5	28
56	Protective role of diallyl tetrasulfide on cadmium-induced testicular damage in adult rats: A biochemical and histological study. Toxicology and Industrial Health, 2011, 27, 407-416.	1.4	21
57	P2X7receptors mediate deleterious renal epithelial-fibroblast cross talk. American Journal of Physiology - Renal Physiology, 2011, 300, F62-F70.	2.7	27
58	Suramin Inhibits Renal Fibrosis in Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2011, 22, 1064-1075.	6.1	73
59	ERK pathway mediates P2X7 expression and cell death in renal interstitial fibroblasts exposed to necrotic renal epithelial cells. American Journal of Physiology - Renal Physiology, 2011, 301, F650-F659.	2.7	20
60	A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy. Kidney International, 2010, 78, 257-268.	5.2	219
61	Transglutaminase-1 protects renal epithelial cells from hydrogen peroxide-induced apoptosis through activation of STAT3 and AKT signaling pathways. American Journal of Physiology - Renal Physiology, 2009, 297, F1361-F1370.	2.7	30
62	Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. American Journal of Physiology - Renal Physiology, 2009, 297, F996-F1005.	2.7	188
63	Diallyl tetrasulfide modulates the cadmium-induced impairment of membrane bound enzymes in rats. Journal of Basic and Clinical Physiology and Pharmacology, 2007, 18, 37-48.	1.3	12
64	Diallyl tetrasulfide protects cadmium-induced alterations in lipids and plasma lipoproteins in rats. Nutrition Research, 2007, 27, 356-361.	2.9	30
65	Cytoprotective and antioxidant role of diallyl tetrasulfide on cadmium induced renal injury: An in vivo and in vitro study. Life Sciences, 2007, 80, 650-658.	4.3	81
66	Cadmium induced mitochondrial injury and apoptosis in vero cells: Protective effect of diallyl tetrasufide from garlic. International Journal of Biochemistry and Cell Biology, 2007, 39, 161-170.	2.8	42
67	Effects of diallyl tetrasulfide on cadmium-induced oxidative damage in the liver of rats. Human and Experimental Toxicology, 2007, 26, 527-534.	2.2	50
68	Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats. Toxicology, 2007, 234, 44-50.	4.2	77
69	Role of diallyl tetrasulfide in ameliorating the cadmium induced biochemical changes in rats. Environmental Toxicology and Pharmacology, 2005, 20, 493-500.	4.0	65
70	Protective effect ofα-lipoic acid against chloroquine-induced hepatotoxicity in rats. Journal of Applied Toxicology, 2004, 24, 21-26.	2.8	42
71	Attenuation of Chloroquineâ€Induced Renal Damage by αâ€Lipoic Acid: Possible Antioxidant Mechanism. Renal Failure, 2004, 26, 517-524.	2.1	30