Chandrababu Naidu K

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2672674/publications.pdf

Version: 2024-02-01

124 papers 2,225 citations

30 h-index 42 g-index

144 all docs

144 docs citations

144 times ranked 1219 citing authors

#	Article	IF	CITATIONS
1	Review on Magnetocaloric Effect and Materials. Journal of Superconductivity and Novel Magnetism, 2018, 31, 1971-1979.	1.8	130
2	A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7, 940-956.	5.7	111
3	Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	95
4	Microwave processed bulk and nano NiMg ferrites: A comparative study on X-band electromagnetic interference shielding properties. Materials Chemistry and Physics, 2017, 187, 164-176.	4.0	91
5	Hydrothermal synthesis of NiFe2O4 nano-particles: structural, morphological, optical, electrical and magnetic properties. Bulletin of Materials Science, 2017, 40, 417-425.	1.7	70
6	Effect of rare earth elements on low temperature magnetic properties of Ni and Co-ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 473, 228-235.	2.3	68
7	A review on biological and biomimetic materials and their applications. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	62
8	Electrical and impedance spectroscopy properties of hydrothermally synthesized Ba0.2Sr0.8-yLayFe12O19 (y = 0.2–0.8) nanorods. Ceramics International, 2020, 46, 5894-5906.	4.8	58
9	Sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2–0.8) nanoparticles: Structural, morphological and dielectric properties. Ceramics International, 2018, 44, 18189-18199.	4.8	57
10	Hydrothermal synthesis of barium copper ferrite nanoparticles: Nanofiber formation, optical, and magnetic properties. Materials Chemistry and Physics, 2019, 236, 121807.	4.0	54
11	Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8 Co0.2-zLazTiO3 (z = 0.05–0.2) nanoparticles. Ceramics International, 2018, 44, 19408-19420.	4.8	53
12	Optical, magnetic and ferroelectric properties of Ba0.2Cu0.8-xLaxFe2O4 (x = 0.2–0.6) nanoparticles. Ceramics International, 2019, 45, 7515-7523.	4.8	51
13	Microwave assisted solid state reaction method: Investigations on electrical and magnetic properties NiMgZn ferrites. Materials Chemistry and Physics, 2016, 181, 432-443.	4.0	46
14	Microwave processed NiMg ferrite: Studies on structural and magnetic properties. Journal of Magnetism and Magnetic Materials, 2016, 420, 109-116.	2.3	44
15	Microwave heated lead cobalt titanate nanoparticles synthesized by sol-gel technique: Structural, morphological, dielectric, impedance and ferroelectric properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 242, 23-30.	3.5	43
16	Investigations on functional properties of hydrothermally synthesized Ba1-xSrxFe12O19 (x = 0.0 â^² 0.8) nanoparticles. Materials Science in Semiconductor Processing, 2019, 94, 136-150.	4.0	43
17	Barium titanate microspheres by low temperature hydrothermal method: studies on structural, morphological, and optical properties. Journal of Asian Ceramic Societies, 2018, 6, 1-6.	2.3	42
18	Effect of calcination temperature on optical, magnetic and dielectric properties of Sol-Gel synthesized Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0–0.8). Ceramics International, 2020, 46, 11515-11529.	4.8	42

#	Article	IF	CITATIONS
19	Effect of pH value on structural and magnetic properties of CuFe ₂ O ₄ nanoparticles synthesized by low temperature hydrothermal technique. Materials Research Express, 2018, 5, 095025.	1.6	41
20	Magnetic properties of hydrothermally synthesized Ba1–xSrxFe12O19 (x = 0.0–0.8) nanomaterials. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	41
21	Grain and grain boundary conduction mechanism in sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2–0.8) nanofibers. Materials Chemistry and Physics, 2019, 223, 241-248.	4.0	40
22	Investigations on transport, impedance and electromagnetic interference shielding properties of microwave processed NiMg ferrites. Materials Research Bulletin, 2017, 89, 125-138.	5.2	39
23	Structural, morphological and optical properties of Ba $1-x$ Cu x TiO 3 ($X = 0.2, 0.4, 0.6, 0.8$) nanoparticles synthesizedby hydrothermal method. Materials Chemistry and Physics, 2018, 215, 310-315.	4.0	39
24	Structural and dielectric properties of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by sugar solutions. Materials Science-Poland, 2018, 36, 123-133.	1.0	36
25	Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system. Journal of the Australian Ceramic Society, 2019, 55, 201-218.	1.9	36
26	Multiferroic Nature of Microwaveâ€Processed and Solâ€Gel Synthesized NanoPb _{1â€x} Co _x TiO ₃ (<i>x</i> = 0.2â€"0.8) Ceramics. Crystal Research and Technology, 2018, 53, 1800139.	1.3	33
27	Ceramic Nanoparticle Synthesis at Lower Temperatures for LTCC and MMIC Technologies. IEEE Transactions on Magnetics, 2018, 54, 1-8.	2.1	33
28	Induced dielectric behavior in high dense AlxLa1-xTiO3 (x = 0.2–0.8) nanospheres. Journal of Materials Science: Materials in Electronics, 2019, 30, 20253-20264.	2.2	33
29	Structural Characterization and Dielectric Studies of Superparamagnetic Iron Oxide Nanoparticles. Journal of the Korean Ceramic Society, 2018, 55, 230-238.	2.3	33
30	Microwave Processed NiMgZn Ferrites for Electromagnetic Intereference Shielding Applications. IEEE Transactions on Magnetics, 2017, 53, 1-7.	2.1	32
31	Dielectric, Magnetic Hyperthermia and Photocatalytic Properties of Mgâ,€.â,‡Znâ,€.â,∱Feâ,,Oâ,,, Nanocrystals. IEEI Transactions on Magnetics, 2020, 56, 1-7.	E 2.1	32
32	Effect of Nonmagnetic Zn ²⁺ Cations on Initial Permeability of Microwaveâ€Treated NiMg Ferrites. International Journal of Applied Ceramic Technology, 2016, 13, 1090-1095.	2.1	27
33	Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: An abridged review. Sensors International, 2020, 1, 100047.	8.4	24
34	AC-electrical conductivity, magnetic susceptibility, dielectric modulus and impedance studies of sol-gel processed nano-NiMgZn ferrites. Materials Chemistry and Physics, 2021, 258, 123902.	4.0	24
35	Structural and ferroelectric properties of microwave heated lead cobalt titanate nanoparticles synthesized by sol–gel technique. Journal of Materials Science: Materials in Electronics, 2018, 29, 4738-4742.	2.2	21
36	Structural transformation and high negative dielectric constant behavior in (1-x) (AlO·2LaO·8TiO3) + (x) (BiFeO3) (x = 0.2 â \in "0.8) nanocomposites. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 122, 114204.	2.7	21

#	Article	IF	CITATIONS
37	Nanorods like microstructure, photocatalytic activity and ac-electrical properties of (1-x) (Al0.2La0.8TiO3)Â+Â(x) (BaTiO3) (xÂ=Â0.2, 0.4, 0.6 & amp; 0.8) nanocomposites. Chemical Physics Letters, 2020, 752, 137552.	2.6	20
38	Temperature and frequency dependence of complex impedance parameters of microwave sintered NiMg ferrites. Journal of the Australian Ceramic Society, 2019, 55, 541-548.	1.9	19
39	Negative dielectric behavior in tetragonal La0.8Co0.2-xEuxTiO3 (xÂ=Â0.01–0.04) nanorods. Materials Characterization, 2020, 166, 110425.	4.4	18
40	Defect dipole polarization mechanism in low-dimensional europium substituted Al0.8La0.2TiO3 nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120, 114058.	2.7	18
41	A Review on Metamaterials for Device Applications. Crystals, 2021, 11, 518.	2.2	18
42	Synthesis and characterization of pure and Cu doped CeO2 nanoparticles: photocatalytic and antibacterial activities evaluation. Biointerface Research in Applied Chemistry, 2020, 10, 5306-5311.	1.0	18
43	Magnetic and antimicrobial properties of cobaltâ€zinc ferrite nanoparticles synthesized by citrateâ€gel method. International Journal of Applied Ceramic Technology, 2019, 16, 1944-1953.	2.1	17
44	Synthesis of nano-NiXFe2O4 (X = Mg/Co) by citrate-gel method: structural, morphological and low-temperature magnetic properties. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	16
45	A review on giant piezoelectric coefficient, materials and applications. Biointerface Research in Applied Chemistry, 2019, 9, 4205-4216.	1.0	16
46	Na3MnPO4CO3 as cathode for aqueous sodium ion batteries: Synthesis and electrochemical characterization. Materials Chemistry and Physics, 2020, 248, 122952.	4.0	15
47	Structural, morphological, optical, magnetic and ferroelectric properties of Ba0.2La0.8Fe2O4 nanofibers. Biointerface Research in Applied Chemistry, 2019, 9, 4243-4247.	1.0	15
48	Optical and functional properties of hydrothermally synthesized tetragonal Ba _{0.4} Cu _{0.6â^x} La _x TiO ₃ (xÂ=Â0.2–0.6) nanoparticles. Materials Research Express, 2020, 7, 015037.	1.6	14
49	Electrochemical Detection of Dopamine and Tyrosine using Metal oxide (MO, M=Cu and Ni) Modified Graphite Electrode: a Comparative Study. Biointerface Research in Applied Chemistry, 2020, 10, 6460-6473.	1.0	14
50	Photocatalytic Activity, Negative ACâ€Electrical Conductivity, Dielectric Modulus, and Impedance Properties in 0.6 (Al _{0.2} La _{0.8} TiO ₃) + 0.4 (BiFeO ₃) Nanocomposite. Crystal Research and Technology, 2020, 55, 2000068.	1.3	13
51	Insights into the Dielectric Loss Mechanism of Bianisotropic FeSi/SiC Composite Materials. ACS Omega, 2020, 5, 25968-25972.	3.5	12
52	BaSrLaFe12O19 nanorods: optical and magnetic properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 8022-8032.	2.2	12
53	Structural and electrical studies of excessively Sm2O3 substituted soft PZT nanoceramics. Ceramics International, 2021, 47, 31294-31301.	4.8	12
54	A review on the origin of nanofibers/nanorods structures and applications. Journal of Materials Science: Materials in Medicine, 2021, 32, 68.	3.6	11

#	Article	IF	CITATIONS
55	Simultaneous detection of dopamine, tyrosine and ascorbic acid using NiO/graphene modified graphite electrode. Biointerface Research in Applied Chemistry, 2020, 10, 5599-5609.	1.0	11
56	Iron deficient BaNixMnxFe12â^2xO19 (x = 0.0–0.5) hexagonal plates: single-domain magnetic structu and dielectric properties. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	re 2.3	10
57	Structural and dielectric properties of CuO-doped SrTiO3 ceramics. AIP Conference Proceedings, 2015,	0.4	9
58	Optical and electronic properties of copper and cobalt substituted nano SrBaFe12O19 synthesized by sol–gel autocombustion method. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	9
59	Preparation, characterization and dielectric properties of sodium alginate/titanium dioxide composite membranes. SN Applied Sciences, 2019, 1, 1.	2.9	9
60	Structural and Magnetic Properties of CdCoFe2O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2020, 33, 1039-1044.	1.8	8
61	Structural and luminescence properties of Dy3+-doped La2(MoO4)3 phosphors. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	8
62	Phase transformation, nanorod-like morphology, wide bandgap, and dielectric properties of 1 â^' x (Al0.2La0.8TiO3) +  x (BaTiO3) (x = 0.2–0.8) nanocomposites. Journal of Materials Science: № Electronics, 2020, 31, 9293-9305.	1aterials ir	า 7
63	Superparamagnetic and photocatalytic activity of CoCe0.02Dy0.02Fe1.96O4 nanoparticles synthesized by citrate-gel autocombustion technique. Biointerface Research in Applied Chemistry, 2019, 9, 4164-4167.	1.0	7
64	Tetragonal structure and dielectric behaviour of rare-earth substituted La0.8Co0.16-xEu0.04GdxTiO3 (x = 0.04 \hat{a} e"0.16) nanorods. Materials Chemistry and Physics, 2022, 278, 125598.	4.0	7
65	Ferroelectric behaviour of microwave sintered iron deficient PbFe12O19- $\hat{\bf l}$. AIP Conference Proceedings, 2016, , .	0.4	6
66	Optical and luminescence properties of pure, iron-doped, and glucose capped ZnO nanoparticles. Results in Physics, 2020, 19, 103508.	4.1	6
67	Structural, morphological and electronic properties of cadmium cobalt ferrite nanoparticles. Biointerface Research in Applied Chemistry, 2020, 10, 4752-4763.	1.0	6
68	Phase change and ferroelectric nature of microwaveâ€heated lead cobalt titanate nanoparticles prepared by solâ€gel method. International Journal of Applied Ceramic Technology, 2019, 16, 130-137.	2.1	5
69	Hexagonal microstructure, magnetic and dielectric properties of iron deficient BaNixZnxFe12â^22xO19 (x = 0.0â°20.5) hexaferrites. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	5
70	SnS-C quantum dot modified glassy carbon electrode for electrochemical detection of dopamine. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	5
71	Microwave Hydrothermal Synthesis: Structural and Dielectric Properties of nano MgFe2O4 Ceramics. Materials Today: Proceedings, 2016, 3, 3810-3813.	1.8	4
72	Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films. Jom, 2016, 68, 1647-1652.	1.9	4

#	Article	IF	CITATIONS
73	Effect of chromium on structural, morphological and electrical properties of lithium ferrite nanoparticles. SN Applied Sciences, 2019, 1, 1.	2.9	4
74	Meteoric synthesis of Luminescent Fe ₂ O ₃ Nanoparticles: A potential Cytotoxic, Antioxidant & Cytoxic, Antioxid	2.1	4
75	Stability of 2D and 3D Perovskites Due to Inhibition of Light-Induced Decomposition. Journal of Electronic Materials, 2020, 49, 7072-7084.	2.2	4
76	Electrochemical aspects of metal-organic frameworks. , 2021, , 65-109.		4
77	Effect of Microwave Heat Treatment on Hydrothermal Synthesis of Nano-MgFe2O4. Journal of Superconductivity and Novel Magnetism, 2020, 33, 417-425.	1.8	3
78	Synthesis and Electrochemical Characterization of NaCoO 2 as Cathode Material in 2â€M NaOH Aqueous Electrolyte. ChemistrySelect, 2021, 6, 1874-1881.	1.5	3
79	Colossal dielectric behavior in Al0.8GdyLa0.2-yTiO3 (y = 0.01–0.04) nanostructures. Journal of Materia Science: Materials in Electronics, 2021, 32, 8017-8032.	lls 2.2	3
80	Structure, morphology, dielectric, and impedance properties of (1-x) (Al0.2La0.8TiO3) + (x) (CuTiO3) (x a \in %= a e \in %0.2 a e \in 0.8) nanocomposites. Journal of Materials Science: Materials in Electronics, 2021, 32, 21225-21236.	2.2	3
81	Significant of biosurfactants in the lubrification, mineral flotation, and petroleum recovery. , 2021, , 329-346.		3
82	Structural and Dielectric Properties of (1-x) (Al0.2La0.8TiO3) + (x) (BiZnFeO3) (x = 0.2 â^'â nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4512-4522.	€‰0.8)	3
83	Optical bandgap and ferroelectric studies of Pb0.8 \hat{a}° y La y Co0.2TiO3 (y = 0.2 to 0.8) synthesized by microwave irradiation processed sol-gel technique. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 035014.	1.5	2
84	Electrochemical characterization and biological applications of luminescent zirconia quantum dots. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	2
85	Titanium-based metal-organic frameworks for photocatalytic applications. , 2021, , 37-63.		2
86	Magnetic properties of Cu and Al doped nano BaFe12O19 ceramics. Biointerface Research in Applied Chemistry, 2020, 10, 5455-5459.	1.0	2
87	Structural, morphological, and magnetic properties of copper zinc cobalt ferrites systems nanocomposites. Biointerface Research in Applied Chemistry, 2020, 10, 6015-6019.	1.0	2
88	Sustainable Microwave Assisted Synthesis and Anti-proliferative Response of Starch-Based CNT-IO and CNT-ZO Nanocomposites: A Comparative Study. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1712-1723.	3.7	2
89	Spectroscopic Properties of NiO, PbO, CaO and MgO Ionic Crystals Synthesized by Ball Milling Method. Recent Patents on Materials Science, 2019, 11, 97-107.	0.5	1
90	Electrochemical Green Synthesis. Advances in Science, Technology and Innovation, 2021, , 267-276.	0.4	1

#	Article	IF	CITATIONS
91	Preparation and characterization using Tectona Grandis natural fiber for the green composite polymer matrix. Materials Today: Proceedings, 2021, 47, 3703-3710.	1.8	1
92	Materials for Conversion of CO2. Biointerface Research in Applied Chemistry, 2021, 12, 486-497.	1.0	1
93	Conducting Polymer-Derived Materials for Batteries. , 2019, , 65-78.		1
94	Electrochemical study of anatase TiO2 in aqueous sodium-ion electrolytes. Biointerface Research in Applied Chemistry, 2020, 10, 5843-5848.	1.0	1
95	Surface Morphology Induced Inorganic Materials for Supercapacitors. , 2019, , 213-238.		1
96	Expanding energy prospects of metal-organic frameworks., 2021,, 139-151.		0
97	Permeable metal-organic frameworks for fuel (gas) storage applications. , 2021, , 111-126.		0
98	Excessively paramagnetic metal organic framework nanocomposites., 2021,, 127-138.		0
99	Development of hybrid organic-inorganic perovskite (HOIP) composites. , 2021, , 225-237.		0
100	Metal-organic framework–based materials and renewable energy. , 2021, , 153-166.		0
101	Niobium Based Materials for Supercapacitors. , 2019, , 1-15.		0
102	Corrosion in Electronics. , 2020, , 38-50.		0
103	Testing the Types of Corrosion. , 2020, , 1-16.		0
104	Marine Corrosion., 2020,, 174-202.		0
105	Corrosion in Reinforcement Cement Concrete. , 2020, , 81-94.		0
106	Anti-Corrosion Coating Mechanisms. , 2020, , 17-37.		0
107	Corrosion and Corrosion Protection in Drinking Water Systems. , 2020, , 65-80.		0
108	Corrosion of Nuclear Waste Systems. , 2020, , 109-120.		0

#	Article	IF	CITATIONS
109	Corrosion in Chemical and Fertilizer Industries. , 2020, , 164-173.		O
110	Environmental Cracking of High-Strength Aluminum Alloys. , 2020, , 95-108.		0
111	Power Plant Corrosion., 2020, , 147-163.		0
112	Corrosion of Polymer Materials. , 2020, , 51-64.		0
113	Heterostructure Nanomaterials for Supercapacitor Applications., 2020,,.		0
114	Advanced Ceramics for Biomedical Applications. Frontiers in Ceramic Science, 2020, , 146-156.	0.0	0
115	Advanced Ceramics for Piezoelectric Actuators. Frontiers in Ceramic Science, 2020, , 1-11.	0.0	0
116	Advanced Ceramics for Effective Electromagnetic Interference Shields. Frontiers in Ceramic Science, 2020, , 80-94.	0.0	0
117	Advanced Ceramics for Antimicrobial Applications. Frontiers in Ceramic Science, 2020, , 157-169.	0.0	0
118	Advanced Ceramics for Thermoelectric Power Generation. Frontiers in Ceramic Science, 2020, , 39-50.	0.0	0
119	Advanced Ceramics for Supercapacitors. Frontiers in Ceramic Science, 2020, , 12-27.	0.0	0
120	Advanced Ceramics for Magnetocaloric Effect in Refrigerators. Frontiers in Ceramic Science, 2020, , 28-38.	0.0	0
121	Advanced Ceramics for Microwave Absorber Applications. Frontiers in Ceramic Science, 2020, , 51-65.	0.0	0
122	Advanced Ceramics for Ferroelectric Devices. Frontiers in Ceramic Science, 2020, , 95-105.	0.0	0
123	Advanced Ceramics for 3D Printing Applications. Frontiers in Ceramic Science, 2020, , 135-145.	0.0	0
124	Graphene Oxide Decorated Tin Sulphide Quantum Dots for Electrochemical Detection of Dopamine and Tyrosine. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	3.7	0