Young Rag Do

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2672581/publications.pdf

Version: 2024-02-01

57758 69250 7,164 183 44 77 citations h-index g-index papers 187 187 187 7331 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photocatalytic Behavior of WO3-Loaded TiO2 in an Oxidation Reaction. Journal of Catalysis, 2000, 191, 192-199.	6.2	412
2	Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance. Light: Science and Applications, 2014, 3, e141-e141.	16.6	325
3	A high-extraction-efficiency nanopatterned organic light-emitting diode. Applied Physics Letters, 2003, 82, 3779-3781.	3.3	314
4	Enhanced Light Extraction from Organic Light-Emitting Diodes with 2D SiO2/SiNx Photonic Crystals. Advanced Materials, 2003, 15, 1214-1218.	21.0	223
5	The Effect of WO3 on the Photocatalytic Activity of TiO2. Journal of Solid State Chemistry, 1994, 108, 198-201.	2.9	201
6	Optical Properties of Three-Band White Light Emitting Diodes. Journal of the Electrochemical Society, 2003, 150, H57.	2.9	198
7	Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure. Journal of Applied Physics, 2004, 96, 7629-7636.	2.5	194
8	Study of Perovskite QD Down-Converted LEDs and Six-Color White LEDs for Future Displays with Excellent Color Performance. ACS Applied Materials & Excellent Color Performance. ACS Applied Materials & Excellent Color Performance.	8.0	159
9	Performance Improvement of Quantum Dot-Light-Emitting Diodes Enabled by an Alloyed ZnMgO Nanoparticle Electron Transport Layer. Chemistry of Materials, 2015, 27, 197-204.	6.7	152
10	Synthesis of narrow-band red-emitting K ₂ SiF ₆ :Mn ⁴⁺ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs. Journal of Materials Chemistry C, 2015, 3, 607-615.	5.5	148
11	Comparisons of the structural and optical properties of o-AgInS2, t-AgInS2, and c-AgInSS8 nanocrystals and their solid-solution nanocrystals with ZnS. Journal of Materials Chemistry, 2012, 22, 18939.	6.7	132
12	Synthesis and Characterization of Green Zn–Ag–In–S and Red Zn–Cu–In–S Quantum Dots for Ultrahigh Color Quality of Down-Converted White LEDs. ACS Applied Materials & Led Samp; Interfaces, 2015, 7, 7342-7350.	8.0	124
13	Efficient and Stable CsPbBr ₃ Quantum-Dot Powders Passivated and Encapsulated with a Mixed Silicon Nitride and Silicon Oxide Inorganic Polymer Matrix. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11756-11767.	8.0	115
14	Synthesis of color-tunable Cu–In–Ga–S solid solution quantum dots with high quantum yields for application to white light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 21901.	6.7	113
15	Evaluation of new color metrics: guidelines for developing narrow-band red phosphors for WLEDs. Journal of Materials Chemistry C, 2016, 4, 8326-8348.	5.5	112
16	High-efficiency red electroluminescent device based on multishelled InP quantum dots. Optics Letters, 2016, 41, 3984.	3.3	101
17	Analysis of circadian properties and healthy levels of blue light from smartphones at night. Scientific Reports, 2015, 5, 11325.	3.3	96
18	Coaxial RuO ₂ –ITO Nanopillars for Transparent Supercapacitor Application. Langmuir, 2014, 30, 1704-1709.	3.5	94

#	Article	IF	CITATIONS
19	Toward scatter-free phosphors in white phosphor-converted light-emitting diodes. Optics Express, 2012, 20, 10218.	3.4	85
20	Fabrication of wafer-scale polystyrene photonic crystal multilayers via the layer-by-layer scooping transfer technique. Journal of Materials Chemistry, 2011, 21, 14167.	6.7	79
21	Analysis of the factors governing the enhanced photoluminescence brightness of Li-doped Y2O3:Eu thin-film phosphors. Applied Physics Letters, 2006, 89, 131915.	3.3	77
22	Shallow and Deep Trap State Passivation for Low-Temperature Processed Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1396-1403.	17.4	75
23	Enhanced forward efficiency of Y_3Al_5O_12:Ce^3+ phosphor from white light-emitting diodes using blue-pass yellow-reflection filter. Optics Express, 2009, 17, 7450.	3.4	70
24	Lowâ€Temperatureâ€Processed 9% Colloidal Quantum Dot Photovoltaic Devices through Interfacial Management of p–n Heterojunction. Advanced Energy Materials, 2016, 6, 1502146.	19.5	70
25	InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices. ACS Applied Nano Materials, 2020, 3, 1972-1980.	5.0	68
26	Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight. Optics Express, 2015, 23, A791.	3.4	66
27	Optical properties of sol–gel derived Y2O3:Eu3+ thin-film phosphors for display applications. Thin Solid Films, 2007, 515, 3373-3379.	1.8	64
28	Hydrothermalâ^'Electrochemical Synthesis of ZnO Nanorods. Crystal Growth and Design, 2009, 9, 3615-3620.	3.0	62
29	Highly Efficient Green ZnAgInS/ZnInS/ZnS QDs by a Strong Exothermic Reaction for Downâ€Converted Green and Tripackage White LEDs. Advanced Functional Materials, 2017, 27, 1602638.	14.9	60
30	Photoluminescence of Band Gap States in AgInS ₂ Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 25677-25683.	3.1	59
31	Highly efficient wide-color-gamut QD-emissive LCDs using red and green perovskite core/shell QDs. Journal of Materials Chemistry C, 2018, 6, 13023-13033.	5.5	59
32	Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes. Applied Physics Letters, 2006, 89, 173502.	3.3	58
33	Tunable White Fluorescent Copper Gallium Sulfide Quantum Dots Enabled by Mn Doping. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12291-12297.	8.0	57
34	Stable and Colorful Perovskite Solar Cells Using a Nonperiodic SiO ₂ /TiO ₂ Multi-Nanolayer Filter. ACS Nano, 2019, 13, 10129-10139.	14.6	55
35	Luminescence Properties of Potential Sr[sub 1â^'x]Ca[sub x]Ga[sub 2]S[sub 4]:Eu Green- and Greenish-Yellow-Emitting Phosphors for White LED. Journal of the Electrochemical Society, 2006, 153, H142.	2.9	53
36	Surface-Plasmon-Enhanced Band Emission of ZnO Nanoflowers Decorated with Au Nanoparticles. Chemistry - A European Journal, 2012, 18, 7467-7472.	3.3	52

3

#	Article	IF	CITATIONS
37	Hybrid 2D Photonic Crystal-Assisted Lu ₃ Al ₅ O ₁₂ :Ce Ceramic-Plate Phosphor and Free-Standing Red Film Phosphor for White LEDs with High Color-Rendering Index. ACS Applied Materials & Diterraces, 2015, 7, 4549-4559.	8.0	50
38	Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography: moth-eye lighting. Optics Express, 2005, 13, 1598.	3.4	49
39	Selecting Morphology of Y3Al5O12:Ce3+Phosphors for Minimizing Scattering Loss in the pc-LED Package. Journal of the Electrochemical Society, 2012, 159, J96-J106.	2.9	49
40	Effect of corrugated substrates on light extraction efficiency and the mechanism of growth in pulsed laser deposited Y2O3:Eu3+ thin-film phosphors. Applied Physics Letters, 2004, 85, 55-57.	3.3	47
41	Light Stamping Lithography: Microcontact Printing without Inks. Journal of the American Chemical Society, 2006, 128, 858-865.	13.7	46
42	Enhanced extraction efficiency of Y2O3:Eu3+ thin-film phosphors coated with hexagonally close-packed polystyrene nanosphere monolayers. Applied Physics Letters, 2007, 91, 041907.	3.3	46
43	Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs. Journal of Materials Chemistry C, 2015, 3, 3582-3591.	5.5	46
44	Enhancement of photocatalytic activity of titanium (IV) oxide with molybdenum (VI) oxide. Materials Research Bulletin, 1993, 28, 1127-1134.	5.2	45
45	Circadian-tunable Perovskite Quantum Dot-based Down-Converted Multi-Package White LED with a Color Fidelity Index over 90. Scientific Reports, 2017, 7, 2808.	3.3	45
46	Systematic and Extensive Emission Tuning of Highly Efficient Cu–In–S-Based Quantum Dots from Visible to Near Infrared. Chemistry of Materials, 2019, 31, 2627-2634.	6.7	45
47	Far-field radiation of photonic crystal organic light-emitting diode. Optics Express, 2005, 13, 5864.	3.4	44
48	Spatially Separated ZnO Nanopillar Arrays on Pt/Si Substrates Prepared by Electrochemical Deposition. Journal of Physical Chemistry C, 2007, 111, 11793-11801.	3.1	44
49	Fabrication and characterization of large-scale multifunctional transparent ITO nanorod films. Journal of Materials Chemistry A, 2013, 1, 5860.	10.3	44
50	Phosphor Converted Three-Band White LED. Bulletin of the Korean Chemical Society, 2004, 25, 1585-1588.	1.9	43
51	Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters. Optics Express, 2010, 18, 1099.	3.4	42
52	2D SiN_x photonic crystal coated Y_3Al_5O_12:Ce^3+ ceramic plate phosphor for high-power white light-emitting diodes. Optics Express, 2011, 19, 25593.	3.4	42
53	Colorâ€byâ€Blue QDâ€Emissive LCD Enabled by Replacing RGB Color Filters with Narrowâ€Band GR InP/ZnSeS/ZnS QD Films. Advanced Optical Materials, 2018, 6, 1701239.	7.3	42
54	Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots. Nanoscale, 2015, 7, 5363-5370.	5.6	41

#	Article	IF	CITATIONS
55	Optical Properties of Potassium Europium Tungstate Phosphors. Journal of the Electrochemical Society, 2000, 147, 4385.	2.9	39
56	Bulk Heterojunction Formation between Indium Tin Oxide Nanorods and CuInS ₂ Nanoparticles for Inorganic Thin Film Solar Cell Applications. ACS Applied Materials & Samp; Interfaces, 2012, 4, 849-853.	8.0	39
57	Color-tunable Ag-In-Zn-S quantum-dot light-emitting devices realizing green, yellow and amber emissions. Journal of Materials Chemistry C, 2017, 5, 953-959.	5.5	39
58	Newly Developed Broadband Antireflective Nanostructures by Coating a Low-Index MgF ₂ Film onto a SiO ₂ Moth-Eye Nanopattern. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10626-10636.	8.0	39
59	Photoluminescence properties of Al3GdB4O12:Eu phosphors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 78, 28-31.	3.5	38
60	New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs. Optics Express, 2011, 19, A270.	3.4	38
61	Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors. Optics Express, 2014, 22, A511.	3.4	37
62	Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly. Scientific Reports, 2016, 6, 28312.	3.3	36
63	High-efficiency blue and white electroluminescent devices based on non-Cd Iâ^'IIIâ^'VI quantum dots. Nano Energy, 2019, 63, 103869.	16.0	36
64	Uniform and continuous Y2O3 coating on ZnS phosphors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 76, 122-126.	3.5	35
65	Improved output coupling efficiency of a ZnS:Mn thin-film electroluminescent device with addition of a two-dimensional SiO2 corrugated substrate. Applied Physics Letters, 2003, 82, 4172-4174.	3.3	33
66	Deep blue, efficient, moderate microcavity organic light-emitting diodes. Organic Electronics, 2010, 11, 137-145.	2.6	33
67	Superhydrophobicity of 2D SiO2 hierarchical micro/nanorod structures fabricated using a two-step micro/nanosphere lithography. Journal of Materials Chemistry, 2012, 22, 14035.	6.7	33
68	Excellent color rendering indexes of multi-package white LEDs. Optics Express, 2012, 20, 20276.	3.4	32
69	Al[sub 2]O[sub 3] Nanoencasulation of BaMgAl[sub 10]O[sub 17]:Eu[sup 2+] Phosphors for Improved Aging Properties in Plasma Display Panels. Journal of the Electrochemical Society, 2004, 151, H210.	2.9	31
70	Wafer-Scale Growth of ITO Nanorods by Radio Frequency Magnetron Sputtering Deposition. Journal of the Electrochemical Society, 2011, 158, K131.	2.9	31
71	Sn–P–F containing glass matrix for the fabrication of phosphor-in-glass for use in high power LEDs. RSC Advances, 2016, 6, 111640-111647.	3.6	31
72	Band-Gap States of AgIn ₅ S ₈ and ZnS–AgIn ₅ S ₈ Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 3149-3155.	3.1	31

#	Article	IF	Citations
73	Facile synthesis and size control of spherical aggregates composed of Cu2O nanoparticles. Journal of Colloid and Interface Science, 2010, 342, 198-201.	9.4	30
74	Utilization of All Hydrothermally Synthesized Red, Green, Blue Nanophosphors for Fabrication of Highly Transparent Monochromatic and Fullâ€Color Plasma Display Devices. Advanced Functional Materials, 2012, 22, 1885-1893.	14.9	30
75	A near-ideal color rendering white solid-state lighting device copackaged with two color-separated Cu–X–S (X = Ga, In) quantum dot emitters. Journal of Materials Chemistry C, 2017, 5, 6755-6761.	5.5	30
76	Uniform Nanoscale SiO[sub 2] Encapsulation of ZnS Phosphors for Improved Aging Properties under Low Voltage Electron Beam Excitation. Journal of the Electrochemical Society, 2001, 148, G548.	2.9	29
77	Wafer-scale colloidal lithography based on self-assembly of polystyrene nanospheres and atomic layer deposition. Journal of Materials Chemistry, 2010, 20, 5025.	6.7	29
78	Full Extraction of 2D Photonic Crystal Assisted $\theta \times Y_{3}\$ hbox $A_{1}_{5}\$ hbox $A_{1}_{5}\$ Ceramic Plate Phosphor for Highly Efficient White LEDs. IEEE Photonics Journal, 2014, 6, 1-10.	2.0	28
79	Multiple-Color-Generating Cu(In,Ga)(S,Se) ₂ Thin-Film Solar Cells via Dichroic Film Incorporation for Power-Generating Window Applications. ACS Applied Materials & Interfaces, 2017, 9, 14817-14826.	8.0	27
80	Synthesis of widely emission-tunable Ag–Ga–S and its quaternary derivative quantum dots. Chemical Engineering Journal, 2018, 347, 791-797.	12.7	27
81	Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals. Journal of Materials Chemistry C, 2013, 1, 1732.	5.5	26
82	Various nanofabrication approaches towards two-dimensional photonic crystals for ceramic plate phosphor-capped white light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 7513.	5.5	26
83	Thin SiO2 coating on ZnS phosphors for improved low-voltage cathodoluminescence properties. Journal of Materials Research, 2000, 15, 2288-2291.	2.6	25
84	Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs. Optics Express, 2012, 20, A1.	3.4	25
85	Application of photoluminescence phosphors to a phosphor-liquid crystal display. Journal of Applied Physics, 2000, 88, 4660.	2.5	24
86	Effects of symmetry, shape, and structural parameters of two-dimensional SiNx photonic crystal on the extracted light from Y2O3:Eu3+ film. Journal of Applied Physics, 2009, 105, 043103.	2.5	24
87	Colloidal synthesis of Cu2SnSe3 nanocrystals. Materials Letters, 2010, 64, 2043-2045.	2.6	24
88	Enhanced Light Extraction from SrGa2S4:Eu2+ Film Phosphors Coated with Various Sizes of Polystyrene Nanosphere Monolayers. Journal of Physical Chemistry C, 2008, 112, 7594-7598.	3.1	23
89	Fabrication of wafer-scale free-standing quantum dot/polymer nanohybrid films for white-light-emitting diodes using an electrospray method. Journal of Materials Chemistry C, 2014, 2, 10439-10445.	5.5	23
90	Lowering Color Temperature of Y[sub 3]Al[sub 5]O[sub 12]:Ce[sup 3+] White Light Emitting Diodes Using Reddish Light-Recycling Filter. Electrochemical and Solid-State Letters, 2010, 13, J5.	2.2	22

#	Article	IF	CITATIONS
91	Vertical Growth of ZnO Nanorods Prepared on an ITO-Coated Glass Substrate by Hydrothermal-Electrochemical Deposition. Journal of the Electrochemical Society, 2012, 159, D355-D361.	2.9	22
92	Solution-processed fabrication of highly transparent mono- and tri-colored quantum dot-light-emitting diodes. Organic Electronics, 2017, 45, 145-150.	2.6	22
93	Structural effect of a two-dimensional SiO2 photonic crystal layer on extraction efficiency in sputter-deposited Y2O3:Eu3+ thin-film phosphors. Journal of Applied Physics, 2007, 102, .	2.5	21
94	Polarized white light from LEDs using remote-phosphor layer sandwiched between reflective polarizer and light-recycling dichroic filter. Optics Express, 2013, 21, A765.	3.4	20
95	Origin of highly efficient photoluminescence in AgIn ₅ S ₈ nanoparticles. Nanoscale, 2017, 9, 10285-10291.	5.6	20
96	The variation of the enhanced photoluminescence efficiency of Y_2O_3:Eu^3+films with the thickness to the photonic crystal layer. Optics Express, 2008, 16, 5689.	3.4	19
97	Full down-conversion of amber-emitting phosphor-converted light-emitting diodes with powder phosphors and a long-wave pass filter. Optics Express, 2010, 18, 11063.	3.4	19
98	Preparation with laser ablation and photoluminescence of Y3Al5O12:Ce nanophosphors. Electronic Materials Letters, 2014, 10, 461-465.	2.2	19
99	Effective surface passivation of multi-shelled InP quantum dots through a simple complexing with titanium species. Applied Surface Science, 2018, 428, 906-911.	6.1	19
100	The Effect of Annealing Temperature on the CL Properties of Sol-Gel Derived Y[sub 2]O[sub 3]:Re (Re=Eu[sup 3+],Tb[sup 3+],Tm[sup 3+]) Phosphors. Journal of the Electrochemical Society, 2007, 154, J272.	2.9	18
101	The realization of a whole palette of colors in a green gap by monochromatic phosphor-converted light-emitting diodes. Optics Express, 2011, 19, 4188.	3.4	18
102	Enhanced DC-Operated Electroluminescence of Forwardly Aligned ††p/MQW/n InGaN Nanorod LEDs via DC Offset-AC Dielectrophoresis. ACS Applied Materials & Interfaces, 2017, 9, 37912-37920.	8.0	18
103	RGB-Colored Cu(ln,Ga)(S,Se) ₂ Thin-Film Solar Cells with Minimal Efficiency Loss Using Narrow-Bandwidth Stopband Nano-Multilayered Filters. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9994-10003.	8.0	18
104	Narrow-Band SrMgAl ₁₀ O ₁₇ :Eu ²⁺ , Mn ²⁺ Green Phosphors for Wide-Color-Gamut Backlight for LCD Displays. ACS Omega, 2020, 5, 19516-19524.	3.5	18
105	Enhanced Light Extraction Efficiency in Pulse Laser Deposited Gd2O3 : Eu3 + Thin-Film Phosphors on 2-D PCLs. Electrochemical and Solid-State Letters, 2005, 8, H43-H45.	2.2	17
106	Strong perturbation of the guided light within Y2O3:Eu3+ thin-film phosphors coated with two-dimensional air-hole photonic crystal arrays. Applied Physics Letters, 2007, 91, .	3.3	17
107	Enhanced fluorescent stability of copper indium sulfide quantum dots through incorporating aluminum into ZnS shell. Journal of Alloys and Compounds, 2016, 662, 173-178.	5.5	17
108	Low-Yellowing Phosphor-in-Glass for High-Power Chip-on-board White LEDs by Optimizing a Low-Melting Sn-P-F-O Glass Matrix. Scientific Reports, 2018, 8, 7412.	3.3	17

#	Article	IF	CITATIONS
109	Efficient Hybrid Tandem Solar Cells Based on Optical Reinforcement of Colloidal Quantum Dots with Organic Bulk Heterojunctions. Advanced Energy Materials, 2020, 10, 1903294.	19.5	17
110	Characterization of Eu-Doped SnO[sub 2] Thin Films Deposited by Radio-Frequency Sputtering for a Transparent Conductive Phosphor Layer. Journal of the Electrochemical Society, 2006, 153, H63.	2.9	16
111	Structural templating and growth behavior of copper phthalocyanine thin films deposited on a polycrystalline perylenetetracarboxylic dianhydride layer. Journal of Applied Physics, 2011, 109, 063507.	2.5	16
112	Simultaneous Improvement of Charge Generation and Extraction in Colloidal Quantum Dot Photovoltaics Through Optical Management. Advanced Functional Materials, 2015, 25, 6241-6249.	14.9	16
113	High-Color-Quality Multipackage Phosphor-Converted LEDs for Yellow Photolithography Room Lamp. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	16
114	Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates. Nanotechnology, 2010, 21, 425302.	2.6	15
115	Enhancement Mechanism of Quantum Yield in Alloyed-Core/Shell Structure of ZnS–CulnS ₂ /ZnS Quantum Dots. Journal of Physical Chemistry C, 2021, 125, 9965-9972.	3.1	15
116	<i>Diphylleia grayi</i> -Inspired Intelligent Hydrochromic Adhesive Film. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49982-49991.	8.0	14
117	Tunable color emission in a Ba1â^'xSrxY2S4: Eu2+ phosphor. Solid State Communications, 1996, 99, 961-963.	1.9	13
118	Improved Cathodoluminescence Output Coupling of ZnS:Tb Thin-Film Phosphors Deposited on 2D SiO[sub 2] Corrugated Glass Substrate. Journal of the Electrochemical Society, 2003, 150, H260.	2.9	13
119	A Study of the Factors Influencing the Brightness of the Photoluminescence of Sputter-Deposited Y[sub 2]O[sub 3]:Eu[sup 3+] Film Phosphors. Journal of the Electrochemical Society, 2008, 155, J111.	2.9	13
120	Fabrication of solution processed 3D nanostructured CuInGaS ₂ thin film solar cells. Nanotechnology, 2014, 25, 125401.	2.6	13
121	Periodic Growth of ZnO Nanorod Arrays on Two-Dimensional SiN <i>>_x</i> Nanohole Templates by Electrochemical Deposition. Journal of Physical Chemistry C, 2008, 112, 4129-4133.	3.1	12
122	Fabrication of Micro-Patterned 2D Nanorod and Nanohole Arrays by a Combination of Photolithography and Nanosphere Lithography. Journal of the Electrochemical Society, 2011, 158, J143.	2.9	12
123	Mononuclear transition metal complexes with sterically hindered carboxylate ligands: Synthesis, structural and spectral properties. Polyhedron, 2011, 30, 340-346.	2.2	12
124	Improved color coordinates of green monochromatic pc-LED capped with a band-pass filter. Optics Express, 2013, 21, 4539.	3.4	12
125	Optimization of the theoretical photosynthesis performance and vision-friendly quality of multi-package purplish white LED lighting. RSC Advances, 2015, 5, 21745-21754.	3.6	12
126	Enhancement Mechanism of the Photoluminescence Quantum Yield in Highly Efficient ZnS–AgIn ₅ S ₈ Quantum Dots with Core/Shell Structures. Journal of Physical Chemistry C, 2018, 122, 10125-10132.	3.1	12

#	Article	IF	Citations
127	Morphological–Electrical Property Relation in Cu(In,Ga)(S,Se) ₂ Solar Cells: Significance of Crystal Grain Growth and Band Grading by Potassium Treatment. Small, 2020, 16, e2003865.	10.0	12
128	Nanoscale ZnO and Alâ€Doped ZnO Coatings on ZnS:Ag Phosphors and their Cathodoluminescent Properties. Journal of the American Ceramic Society, 2008, 91, 451-455.	3.8	11
129	Enhanced Light Extraction From Green Quantum Dot Light-Emitting Diodes by Attaching Microstructure Arrayed Films. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 42-47.	2.9	11
130	Stable and Efficient Green Perovskite Nanocrystal–Polysilazane Films for White LEDs Using an Electrospray Deposition Process. ACS Applied Materials & Legal 11, 22510-22520.	8.0	11
131	Crystal growth and characterization of the solid solutions (ZnS)1-x(CuMS2)x (M = Al, In, or Fe). Chemistry of Materials, 1992, 4, $1014-1017$.	6.7	10
132	The crystal growth and characterization of the solid solutions (ZnS)1â^'x (CuGaS2)x. Journal of Solid State Chemistry, 1992, 96, 360-365.	2.9	10
133	Influence of a two-dimensional SiO2 nanorod structure on the extraction efficiency of ZnS:Mn thin-film electroluminescent devices. Applied Physics Letters, 2004, 84, 1377-1379.	3.3	10
134	Highly efficient full-color display based on blue LED backlight and electrochromic light-valve coupled with front-emitting phosphors. Optics Express, 2011, 19, 16022.	3.4	10
135	Multiâ€Functional Transparent Luminescent Configuration for Advanced Photovoltaics. Advanced Energy Materials, 2016, 6, 1502404.	19.5	10
136	Optical Transitions of CulnS ₂ Nanoparticles: Two Types of Absorption and Two Types of Emission. Journal of Physical Chemistry C, 2020, 124, 14400-14408.	3.1	10
137	Cathodoluminescence Properties of SrY[sub 2]S[sub 4]:Eu Phosphor for Application in Field Emission Display. Journal of the Electrochemical Society, 2000, 147, 1597.	2.9	9
138	Sol–Gel Synthesis of an Efficient Blue CaMgSi[sub 2]O[sub 6]:Eu[sup 2+] Thin-Film Phosphor with Two-Dimensional Triangular-Lattice SiN[sub x] Air-Hole Photonic Crystal. Journal of the Electrochemical Society, 2009, 156, J283.	2.9	9
139	Fabrication of 2D photonic crystal assisted Y2O3:Eu3+ thin-film phosphors by direct nano-imprinting. Microelectronic Engineering, 2011, 88, 2930-2933.	2.4	9
140	Dual wavelength lasing of InGaN/GaN axial-heterostructure nanorod lasers. Nanoscale, 2019, 11, 14186-14193.	5.6	9
141	Optical Properties of Y[sub 2]O[sub 3]:Eu[sup 3+] Thin-Film Phosphors Coated with 2D SiN[sub x]â^•Air Photonic Crystal Layers. Electrochemical and Solid-State Letters, 2007, 10, H82.	2.2	8
142	Two-dimensional photonic crystal arrays for polymer:fullerene solar cells. Nanotechnology, 2011, 22, 465403.	2.6	8
143	Toward scatter-free phosphors in white phosphor-converted light-emitting diodes: reply to comments. Optics Express, 2013, 21, 5074.	3.4	8
144	Use of a precursor solution to fill the gaps between indium tin oxide nanorods, for preparation of three-dimensional CulnGaS2 thin-film solar cells. Research on Chemical Intermediates, 2014, 40, 49-56.	2.7	7

#	Article	IF	CITATIONS
145	Realization of high-color-quality white-by-blue organic light-emitting diodes with yellow and red phosphor films. Journal of Luminescence, 2019, 207, 195-200.	3.1	7
146	Quantum-dot-based white lighting planar source through downconversion by blue electroluminescence. Optics Letters, 2014, 39, 1208.	3.3	6
147	High-efficiency organic solar cells prepared using a halogen-free solution process. Cell Reports Physical Science, 2021, 2, 100517.	5.6	6
148	Preparation and Photoluminescence of Green-Emitting Phosphors SrGa2S4:Eu. Bulletin of the Korean Chemical Society, 2013, 34, 3919-3922.	1.9	6
149	Design and Optical Properties of ZnS:Mn Thin-Film Electroluminescent Devices on 2D SiO[sub 2] Corrugated Photonic Crystal Substrates. Journal of the Electrochemical Society, 2006, 153, H71.	2.9	5
150	Brighter Photoluminescence of 2D Photonic Crystal-Assisted Y[sub 2]O[sub 3]:Eu[sup 3+] Thick-Film Phosphors over Screened Powder Phosphors. Electrochemical and Solid-State Letters, 2009, 12, J58.	2.2	5
151	Two-Dimensional Hexagonal Lattice Photonic Crystal Band-Edge Laser Patterned by Nanosphere Lithography. Applied Physics Express, 2012, 5, 042102.	2.4	5
152	Visible cathodoluminescence of quantum dot films by direct irradiation of electron beam and its materialization as a field emission device. Optics Express, 2013, 21, 12519.	3.4	5
153	Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila. Scientific Reports, 2016, 6, 37784.	3.3	5
154	Single and Dual Doping of Blueâ€Emissive ZnSeTe Quantum Dots with Transition Metal lons. Advanced Optical Materials, 2022, 10, 2101767.	7.3	5
155	Effect of the extinction coefficient on the extraction efficiency of ZnS:Mn thin-film phosphors grown on two-dimensional nanorod substrates. Applied Physics Letters, 2005, 86, 251912.	3.3	4
156	Spectroscopic Influence of Virtual Reality and Augmented Reality Display Devices on the Human Non-Visual Characteristics and Melatonin Suppression Response. IEEE Photonics Journal, 2018, , 1-1.	2.0	4
157	A Facile Synthetic Method of Silver Nanoparticles with a Continuous Size Range from sub-10 nm to 40 nm. Bulletin of the Korean Chemical Society, 2011, 32, 117-121.	1.9	4
158	Novel Electroluminescent Polymer Derived from Pyrene-Functionalized Polyaniline. Bulletin of the Korean Chemical Society, 2011, 32, 1495-1499.	1.9	4
159	Synthesis of Cs ₃ MnBr ₅ Green Phosphors Using an Eco-Friendly Evaporative Crystallization Process. ACS Omega, 2022, 7, 25031-25038.	3 . 5	4
160	Effects of 2D SiO[sub 2] Nanorod-Modified Substrates on the Morphology and CL Properties of ZnS:Mn Particle-like Thin-Film Phosphors. Journal of the Electrochemical Society, 2005, 152, H48.	2.9	3
161	Photoluminescence of Organic Luminescent Layers on a 2D SiO[sub 2] Nanorod Array or between 2D Corrugated Ag and SiO[sub 2] Layers. Journal of the Electrochemical Society, 2005, 152, H124.	2.9	3
162	Pulsed Laser Deposition Growth of CaMgSi[sub 2]O[sub 6]:Eu[sup 2+] Thin Film Phosphors. Electrochemical and Solid-State Letters, 2007, 10, J23.	2.2	3

#	Article	IF	CITATIONS
163	Improved performance of dye-sensitized solar cells using dual-function TiO_2 nanowire photoelectrode. Optics Express, 2015, 23, A1280.	3.4	3
164	Estimation of melatonin level and core body temperature: heart rate and heart rate variability as circadian rhythm markers. Biological Rhythm Research, 2022, 53, 1735-1752.	0.9	3
165	Enhancement of Photoluminescence by Photonic Crystal Scattering and Nanocrystalline Surface Scattering From Y ₂ O ₃ :Tb ₃₊ Film Phosphors. Journal of the Electrochemical Society, 2011, 158, J316-J320.	2.9	2
166	Characterization of four-color multi-package white light-emitting diodes combined with various green monochromatic phosphor-converted light-emitting diodes. , 2012, , .		2
167	Fabrication of Circadian Light Meter with Non-Periodic Optical Filters to Evaluate the Non-Visual Effects of Light on Humans. Applied Sciences (Switzerland), 2021, 11, 8283.	2.5	2
168	Preparation and photoluminescence properties of transparent suspensions of Ca(Y1â^'Eu)2(MoO4)4 nanophosphors. Optical Materials, 2021, 119, 111394.	3.6	2
169	Fabrication of SiN <i>_x</i> Nanopore Filters Using Combined Process of Nanoimprint and Dualâ€Side Aligned Photolithography for Purified Cs ₃ MnBr ₅ Green Phosphors. Advanced Materials Technologies, 2022, 7, .	5.8	2
170	Effects of 2D SiO 2 and SiNx photonic crystal on extracted light from Y 3 Al 5 O 12 :Ce ³⁺ ceramic plate phosphor. Proceedings of SPIE, 2012, , .	0.8	1
171	High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters. Proceedings of SPIE, 2014, , .	0.8	1
172	2D TiO2 photonic crystal-assisted Y3Al5O12:Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs. , 2015, , .		1
173	Fabrication of an InGaN/GaN-based LED nanorod array by nanosphere lithography and its optical properties. , 2015, , .		1
174	3-D architecture between indium tin oxide nano-rods and a solution processed CulnGaS2 absorber layer for thin film solar cells. Thin Solid Films, 2017, 636, 506-511.	1.8	1
175	Color-Generating 1D PC Dichroic Filter on Cu(In,Ga)(S,Se)2 Thin-Film Photovoltaic Cells for Building Integrated Photovoltaics. , 2018, , .		1
176	73â€3: Invited Paper: Influences of Circadian Illuminances from Lighting and TV on the Human Locomotor Activity, Sleep Disorder, EEG, HRV, and Melatonin Secretion. Digest of Technical Papers SID International Symposium, 2020, 51, 1094-1097.	0.3	1
177	Optical Properties Enhancement of Electrosprayed Quantum Dot/Polymer Nanohybrid Films by a Solvent Vapor Treatment. Science of Advanced Materials, 2016, 8, 224-230.	0.7	1
178	Efficiency enhancement in white phosphor-on-cup light-emitting diodes using short wave-pass filters. , 2010, , .		0
179	Silver Nanoparticles Are Assembled Only on the Two Facets of the Rod Template. Journal of Nanoscience and Nanotechnology, 2012, 12, 1638-1640.	0.9	0
180	Realization of quantum dot-based polarized white LEDs using short-wavelength pass dichroic filters and reflective polarizer films. , 2014, , .		0

#	Article	IF	CITATIONS
181	Enhancing the alignment selectivity of p/MQW/n InGaN nanorod LEDs. , 2018, , .		0
182	Tri-package White LEDs as a High-Color-Quality Lighting Source with Cd-free Quantum Dots. , 0, , .		0
183	Realization of White LEDs Using Free-Standing Quantum Dot Films. , 0, , .		O