
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2672026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prospects of biodiesel from Jatropha in India: A review. Renewable and Sustainable Energy Reviews, 2010, 14, 763-771.	16.4	363
2	A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renewable and Sustainable Energy Reviews, 2015, 52, 142-154.	16.4	326
3	Stability of biodiesel and its blends: A review. Renewable and Sustainable Energy Reviews, 2010, 14, 667-678.	16.4	321
4	Kinetics of acid base catalyzed transesterification of Jatropha curcas oil. Bioresource Technology, 2010, 101, 7701-7706.	9.6	153
5	Impact analysis of biodiesel on engine performance—A review. Renewable and Sustainable Energy Reviews, 2011, 15, 4633-4641.	16.4	144
6	Biodiesel production from Jatropha curcas oil. Renewable and Sustainable Energy Reviews, 2010, 14, 3140-3147.	16.4	134
7	Acid base catalyzed transesterification kinetics of waste cooking oil. Fuel Processing Technology, 2011, 92, 32-38.	7.2	118
8	Oxidation stability of blends of Jatropha biodiesel with diesel. Fuel, 2011, 90, 3014-3020.	6.4	102
9	Overview of Municipal Solid Waste Generation, Composition, and Management in India. Journal of Environmental Engineering, ASCE, 2019, 145, .	1.4	94
10	Thermal stability of biodiesel and its blends: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 438-448.	16.4	91
11	Review of different test methods for the evaluation of stability of biodiesel. Renewable and Sustainable Energy Reviews, 2010, 14, 1937-1947.	16.4	76
12	Process parameter optimization of biodiesel production from algal oil by response surface methodology and artificial neural networks. Fuel, 2020, 277, 118254.	6.4	75
13	Application of thermogravimetric analysis for thermal stability of Jatropha curcas biodiesel. Fuel, 2012, 93, 252-257.	6.4	68
14	Response surface methodology based optimization of in situ transesterification of dry algae with methanol, H2SO4 and NaOH. Fuel, 2019, 239, 511-520.	6.4	66
15	Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology. Energy, 2017, 140, 879-884.	8.8	65
16	Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India. Bioresource Technology, 2012, 107, 122-130.	9.6	54
17	Effect of metal contents on oxidation stability of biodiesel/diesel blends. Fuel, 2014, 116, 14-18.	6.4	54
18	Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways. Waste Management, 2016, 48, 548-564.	7.4	51

2

#	Article	IF	CITATIONS
19	Cold flow properties improvement of Jatropha curcas biodiesel and waste cooking oil biodiesel using winterization and blending. Energy, 2015, 89, 702-707.	8.8	47
20	Process parameter assessment of biodiesel production from a Jatropha–algae oil blend by response surface methodology and artificial neural network. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 2119-2125.	2.3	47
21	Effect of V cut in perforated twisted tape insert on heat transfer and fluid flow behavior of tube flow: An experimental study. Experimental Heat Transfer, 2019, 32, 524-544.	3.2	42
22	Pongamia as a Source of Biodiesel in India. Smart Grid and Renewable Energy, 2011, 02, 184-189.	1.1	41
23	Effect of metal contaminants and antioxidants on the storage stability of Jatropha curcas biodiesel. Fuel, 2013, 109, 379-383.	6.4	41
24	Power generation from MSW of Haridwar city: A feasibility study. Renewable and Sustainable Energy Reviews, 2011, 15, 69-90.	16.4	40
25	Long term storage stability of Jatropha curcas biodiesel. Energy, 2011, 36, 5409-5415.	8.8	37
26	Engine performance and emission analysis using oxidatively stabilized Jatropha curcas biodiesel. Fuel, 2013, 106, 152-156.	6.4	37
27	Correlation development for effect of metal contaminants on the oxidation stability of Jatropha curcas biodiesel. Fuel, 2011, 90, 2045-2050.	6.4	34
28	A comprehensive review of the influence of physicochemical properties of biodiesel on combustion characteristics, engine performance and emissions. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8, 510-533.	4.2	34
29	Correlation development between the oxidation and thermal stability of biodiesel. Fuel, 2012, 102, 354-358.	6.4	32
30	Process parameter optimization of low temperature transesterification of algae-Jatropha Curcas oil blend. Energy, 2017, 119, 983-988.	8.8	32
31	Prediction of jatropha-algae biodiesel blend oil yield with the application of artificial neural networks technique. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 1285-1295.	2.3	31
32	Effects of Double V Cuts in Perforated Twisted Tape Insert: An Experimental Study. Heat Transfer Engineering, 2020, 41, 1473-1484.	1.9	31
33	Performance evaluation of adaptive neuro-fuzzy inference system and response surface methodology in modeling biodiesel synthesis from jatropha–algae oil. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 3000-3008.	2.3	24
34	Oxidation, Thermal, and Storage Stability Studies of Jatropha Curcas Biodiesel. , 2012, 2012, 1-15.		23
35	Production & optimization of biodiesel from rubber oil using BBD technique. Materials Today: Proceedings, 2021, 38, 69-73.	1.8	21
36	Establishment of correlations for the thermo-hydraulic parameters due to perforation in a multi-V rib roughened single pass solar air heater. Experimental Heat Transfer, 2023, 36, 597-616.	3.2	19

#	Article	IF	CITATIONS
37	Optimization of Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Response Surface Methodology. ISRN Chemical Engineering, 2012, 2012, 1-8.	1.2	18
38	Study of Entropy Generation in Heat Exchanger Tube With Multiple V Cuts in Perforated Twisted Tape Insert. Journal of Heat Transfer, 2019, 141, .	2.1	17
39	Impact analysis of biodiesel production parameters for different catalyst. Environment, Development and Sustainability, 0, , 1.	5.0	16
40	Advances of Carbon Capture and Storage in Coal-Based Power Generating Units in an Indian Context. Energies, 2020, 13, 4124.	3.1	13
41	Correlation Development for the Effect of Metal Contaminants on the Thermal Stability of Jatropha curcas Biodiesel. Energy & Fuels, 2011, 25, 1276-1283.	5.1	11
42	The production of biodiesel using Karanja (Pongamia pinnata) and Jatropha (Jatropha curcas) Oil. , 2019, , 397-408.		11
43	Optimization of low-temperature transesterification of low FFA blend of sunflower oil and algae oil. Fuel, 2020, 279, 118459.	6.4	11
44	A review on bioenergy and biofuel production. Materials Today: Proceedings, 2022, 49, 510-516.	1.8	11
45	Optimization of long-term storage stability of Jatropha curcas biodiesel using antioxidants by means of response surface methodology. Biomass and Bioenergy, 2011, 35, 4008-4014.	5.7	10
46	Options for the conversion of pulp and paper mill by-products in Western Canada. Sustainable Energy Technologies and Assessments, 2018, 26, 83-92.	2.7	10
47	Measurement of the Oxidation Stability of Biodiesel Using a Modified Karl Fischer Apparatus. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 899-905.	1.9	9
48	Emerging biorefinery technologies for Indian forest industry to reduce GHG emissions. Ecotoxicology and Environmental Safety, 2015, 121, 105-109.	6.0	8
49	Analysis of the effect of variation in open area ratio in perforated multi-V rib roughened single pass solar air heater- Part A. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-21.	2.3	8
50	Effect of Natural Fibers Surface Treatment and their Reinforcement in Thermo- Plastic Polymer Composites: A Review. Current Organic Synthesis, 2017, 14, 186-199.	1.3	7
51	The current and future perspectives of biofuels. , 2019, , 495-517.		4
52	Photovoltaic cells cooling techniques for energy efficiency optimization. Materials Today: Proceedings, 2021, 46, 5458-5463.	1.8	4
53	Investigation of the shelf life of the optimized Neem biodiesel and its execution and excretion characteristics on automotive diesel engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-24.	2.3	4
54	Effect of Biodiesel on Engine Performance and Emissions. Lecture Notes in Mechanical Engineering, 2022, , 383-393.	0.4	4

#	Article	IF	CITATIONS
55	Impact of biofuel production on water demand in Alberta Canadian Biosystems Engineering / Le Genie Des Biosystems Au Canada, 2015, 56, 8.11-8.22.	0.1	3
56	Development of Decision Model for Power Generation from Carbonized Food Waste. Waste and Biomass Valorization, 2018, 9, 1955-1960.	3.4	3
57	Impact of Methanol on Engine Performance and Emissions. Energy, Environment, and Sustainability, 2021, , 247-269.	1.0	3
58	Composites from Bagasse Fibers, Its Characterization and Applications. , 2015, , 91-119.		2
59	Biochar: A source of nano catalyst in transesterification process. Materials Today: Proceedings, 2021, 46, 5501-5505.	1.8	2
60	Effectiveness of Homogeneous and Heterogeneous Catalyst on Biodiesel Yield: A Review. Springer Proceedings in Energy, 2021, , 375-385.	0.3	2
61	Classification and Synthesis of Nanoparticles: A Review. Springer Proceedings in Energy, 2021, , 1113-1125.	0.3	2
62	Green Composites and Their Properties. Advances in Chemical and Materials Engineering Book Series, 0, , 148-164.	0.3	2
63	Natural Fibers for the Production of Green Composites. Advances in Chemical and Materials Engineering Book Series, 0, , 1-23.	0.3	2
64	A Detailed Analysis of Municipal Solid Waste Generation and Composition for Haridwar City, Uttrakhand, India. Springer Proceedings in Energy, 2021, , 855-868.	0.3	1
65	Processing and Properties of Bagasse Fibers. , 2014, , 63-75.		1
66	A Prospective Utilization of the Biomass for the Production of the Biodiesel. Mini-Reviews in Organic Chemistry, 2021, 18, 422-433.	1.3	0
67	Techno-Economic and Life Cycle Assessment for the Production of Green Composites. , 2017, , 407-413.		0
68	Techno-Economic and Life Cycle Assessment for the Production of Green Composites. Advances in Chemical and Materials Engineering Book Series, 0, , 192-200.	0.3	0
69	Potential and Challenges of Using Biodiesel in a Compression Ignition Engine. Energy, Environment, and Sustainability, 2022, , 289-317.	1.0	0