
Fabio Dionigi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2670462/publications.pdf Version: 2024-02-01

FARIO DIONICI

#	Article	IF	CITATIONS
1	NiFeâ€Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Nonâ€Acidic Electrolytes. Advanced Energy Materials, 2016, 6, 1600621.	19.5	765
2	In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nature Communications, 2020, 11, 2522.	12.8	594
3	Electrolysis of low-grade and saline surface water. Nature Energy, 2020, 5, 367-377.	39.5	579
4	Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Letters, 2019, 4, 933-942.	17.4	578
5	Design Criteria, Operating Conditions, and Nickel–Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis. ChemSusChem, 2016, 9, 962-972.	6.8	467
6	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	38.1	453
7	P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nature Materials, 2020, 19, 1215-1223.	27.5	278
8	Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science, 2014, 346, 1502-1506.	12.6	277
9	Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO ₂ RR). Advanced Materials, 2019, 31, e1805617.	21.0	255
10	Electrochemical Hydrogen Evolution: Sabatier's Principle and the Volcano Plot. Journal of Chemical Education, 2012, 89, 1595-1599.	2.3	243
11	Direct Electrolytic Splitting of Seawater: Activity, Selectivity, Degradation, and Recovery Studied from the Molecular Catalyst Structure to the Electrolyzer Cell Level. Advanced Energy Materials, 2018, 8, 1800338.	19.5	185
12	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie - International Edition, 2021, 60, 14446-14457.	13.8	170
13	Tantalum Nitride Nanorod Arrays: Introducing Ni–Fe Layered Double Hydroxides as a Cocatalyst Strongly Stabilizing Photoanodes in Water Splitting. Chemistry of Materials, 2015, 27, 2360-2366.	6.7	158
14	Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt–Ni–Co Alloy Nanocatalysts. Nano Letters, 2015, 15, 7473-7480.	9.1	156
15	Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nature Communications, 2021, 12, 5984.	12.8	120
16	Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Current Opinion in Electrochemistry, 2019, 18, 61-71.	4.8	111
17	A comparison of rotating disc electrode, floating electrode technique and membrane electrode assembly measurements for catalyst testing. Journal of Power Sources, 2018, 392, 274-284.	7.8	94
18	Impact of Carbon Support Functionalization on the Electrochemical Stability of Pt Fuel Cell Catalysts. Chemistry of Materials, 2018, 30, 7287-7295.	6.7	73

FABIO DIONIGI

#	Article	IF	CITATIONS
19	Gas phase photocatalytic water splitting with Rh2â^'yCryO3/GaN:ZnO in μ-reactors. Energy and Environmental Science, 2011, 4, 2937.	30.8	71
20	Evidence of Marsâ€Vanâ€Krevelen Mechanism in the Electrochemical Oxygen Evolution on Niâ€Based Catalysts. Angewandte Chemie - International Edition, 2021, 60, 14981-14988.	13.8	67
21	Dealloyed PtNi-Core–Shell Nanocatalysts Enable Significant Lowering of Pt Electrode Content in Direct Methanol Fuel Cells. ACS Catalysis, 2019, 9, 3764-3772.	11.2	66
22	Molecular Understanding of the Impact of Saline Contaminants and Alkaline pH on NiFe Layered Double Hydroxide Oxygen Evolution Catalysts. ACS Catalysis, 2021, 11, 6800-6809.	11.2	50
23	Suppression of the water splitting back reaction on GaN:ZnO photocatalysts loaded with core/shell cocatalysts, investigated using a 1¼-reactor. Journal of Catalysis, 2012, 292, 26-31.	6.2	45
24	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie, 2021, 133, 14567-14578.	2.0	30
25	Plateau–insulator transition in graphene. New Journal of Physics, 2010, 12, 053004.	2.9	22
26	Seed-Mediated Synthesis and Catalytic ORR Reactivity of Facet-Stable, Monodisperse Platinum Nano-Octahedra. ACS Applied Energy Materials, 2021, 4, 9542-9552.	5.1	18
27	Optical detection of quantum Hall effect of composite fermions and evidence of the l^/2=3/8state. Physical Review B, 2010, 81, .	3.2	14
28	Anisotropy of Pt nanoparticles on carbon- and oxide-support and their structural response to electrochemical oxidation probed by <i>in situ</i> techniques. Physical Chemistry Chemical Physics, 2020, 22, 22260-22270.	2.8	9
29	Evidence of Marsâ€Vanâ€Krevelen Mechanism in the Electrochemical Oxygen Evolution on Niâ€Based Catalysts. Angewandte Chemie, 2021, 133, 15108-15115.	2.0	9
30	A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements. Review of Scientific Instruments, 2013, 84, 103910.	1.3	7
31	Trion confinement and exciton shrinkage in the 2DEG at high magnetic fields. Solid State Communications, 2012, 152, 1123-1126.	1.9	2
32	Optical probing of the metal-to-insulator transition in a two-dimensional high-mobility electron gas. New Journal of Physics, 2011, 13, 063003.	2.9	1
33	Optical probing of quantum Hall effect of composite fermions and of the liquid-insulator transition. Journal of Physics: Conference Series, 2011, 334, 012022.	0.4	0
34	(Invited) Pt Alloy Octahedral Nanoparticle Catalysts from Screening Studies to Fuel Cell Measurements. ECS Meeting Abstracts, 2021, MA2021-02, 1192-1192.	0.0	0
35	Catalytically-Active Phases and Reaction Mechanism of Ni-Based and Co-Based Layered Double Hydroxides for the Oxygen Evolution Reaction. ECS Meeting Abstracts, 2022, MA2022-01, 1368-1368.	0.0	0