Mohammed Sanhoob

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2669713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on coke management during dry reforming of methane. International Journal of Energy Research, 2015, 39, 1196-1216.	4.5	279
2	Aquathermolysis of heavy oil: A review and perspective on catalyst development. Fuel, 2015, 157, 219-231.	6.4	181
3	Catalytic upgrading of vegetable oils into jet fuels range hydrocarbons using heterogeneous catalysts: A review. Journal of Industrial and Engineering Chemistry, 2015, 29, 12-23.	5.8	104
4	Recent Developments on Silicoaluminates and Silicoaluminophosphates in the Methanol-to-Propylene Reaction: A Mini Review. Industrial & Engineering Chemistry Research, 2015, 54, 4891-4905.	3.7	74
5	Maximizing Diesel Production through Oligomerization: A Landmark Opportunity for Zeolite Research. Industrial & Engineering Chemistry Research, 2015, 54, 781-789.	3.7	64
6	Selective catalytic cracking of n-hexane to propylene over hierarchical MTT zeolite. Fuel, 2014, 135, 105-111.	6.4	55
7	Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts. Energies, 2019, 12, 2872.	3.1	50
8	Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications. Open Chemistry, 2020, 18, 1148-1166.	1.9	47
9	Dimethyl ether to olefins over dealuminated mordenite (MOR) zeolites derived from natural minerals. Journal of Natural Gas Science and Engineering, 2016, 28, 566-571.	4.4	46
10	Ring opening of hydrocarbons for diesel and aromatics production: Design of heterogeneous catalytic systems. Fuel, 2016, 181, 618-629.	6.4	44
11	Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction. Journal of Analytical and Applied Pyrolysis, 2015, 114, 1-10.	5.5	42
12	Controlled and rapid growth of MTT zeolite crystals with low-aspect-ratio in a microwave reactor. Chemical Engineering Journal, 2013, 226, 367-376.	12.7	40
13	Dimethyl ether-to-olefins over aluminum rich ZSM-5: The role of Ca and La as modifiers. Fuel, 2018, 211, 18-26.	6.4	40
14	Conversion of methanol to olefins over Al-rich ZSM-5 modified with alkaline earth metal oxides. Catalysis Science and Technology, 2016, 6, 7852-7859.	4.1	39
15	Development of hierarchical EU-1 zeolite by sequential alkaline and acid treatments for selective dimethyl ether to propylene (DTP). Applied Catalysis A: General, 2015, 497, 127-134.	4.3	37
16	Opportunities for less-explored zeolitic materials in the syngas-to-olefins pathway over nanoarchitectured catalysts: a mini review. Catalysis Science and Technology, 2020, 10, 1582-1596.	4.1	35
17	Waste to liquid fuels: potency, progress and challenges. International Journal of Energy Research, 2015, 39, 1451-1478.	4.5	34
18	Viscosity Reduction of Heavy Oil Using Nanocatalyst in Aquathermolysis Reaction. KONA Powder and Particle Journal, 2016, 33, 3-16.	1.7	34

#	Article	IF	CITATIONS
19	Steam catalytic cracking of heavy naphtha (C12) to high octane naphtha over B-MFI zeolite. Applied Catalysis B: Environmental, 2017, 210, 432-443.	20.2	31
20	Mechanochemical Route and Recrystallization Strategy To Fabricate Mordenite Nanoparticles from Natural Zeolites. Crystal Growth and Design, 2017, 17, 3313-3320.	3.0	31
21	OSDA-free chabazite (CHA) zeolite synthesized in the presence of fluoride for selective methanol-to-olefins. Microporous and Mesoporous Materials, 2019, 274, 277-285.	4.4	31
22	Microwave-assisted hydrothermal synthesis of mordenite zeolite: Optimization of synthesis parameters. Microporous and Mesoporous Materials, 2016, 232, 211-217.	4.4	30
23	Hydroisomerization of sustainable feedstock in biomass-to-fuel conversion: a critical review. International Journal of Energy Research, 2015, 39, 741-759.	4.5	29
24	Robust surface-modified Beta zeolite for selective production of lighter fuels by steam-assisted catalytic cracking from heavy oil. Fuel, 2016, 168, 61-67.	6.4	29
25	Zirconia-Based Nanocatalysts in Heavy Oil Upgrading: A Mini Review. Energy & Fuels, 2018, 32, 2840-2854.	5.1	29
26	lsomerization of <i>n</i> -Butane over Cost-Effective Mordenite Catalysts Fabricated via Recrystallization of Natural Zeolites. Industrial & Engineering Chemistry Research, 2018, 57, 1894-1902.	3.7	28
27	Synthesis of ZSM-12 (MTW) with different Al-source: Towards understanding the effects of crystallization parameters. Microporous and Mesoporous Materials, 2014, 194, 31-37.	4.4	27
28	Stability Assessment of Regenerated Hierarchical ZSM-48 Zeolite Designed by Post-Synthesis Treatment for Catalytic Cracking of Light Naphtha. Energy & Fuels, 2017, 31, 14097-14103.	5.1	27
29	Catalyst development for tar reduction in biomass gasification: Recent progress and the way forward. Journal of Environmental Management, 2022, 305, 114274.	7.8	27
30	Peculiarities of Glycerol Conversion to Chemicals Over Zeolite-Based Catalysts. Frontiers in Chemistry, 2019, 7, 233.	3.6	26
31	An exciting opportunity for zeolite adsorbent design in separation of C4 olefins through adsorptive separation. Separation and Purification Technology, 2019, 221, 126-151.	7.9	26
32	Microwave-assisted hydrothermal synthesis of zeolite Beta coatings on ALD-modified borosilicate glass for application in microstructured reactors. Chemical Engineering Journal, 2008, 135, S117-S120.	12.7	24
33	Fluidizable Fe–Co/Ce–ZrO ₂ Catalysts for Steam Reforming of Toluene as a Tar Surrogate in Biomass Gasification. Energy & Fuels, 2018, 32, 12833-12842.	5.1	24
34	Hydrothermally stable acid-modified ZSM-22 zeolite for selective propylene production via steam-assisted catalytic cracking of n-hexane. Microporous and Mesoporous Materials, 2018, 260, 30-39.	4.4	22
35	Development of mesoporous ZSM-12 zeolite and its application in alkylation of 2-methylnaphthalene. Research on Chemical Intermediates, 2016, 42, 6437-6448.	2.7	20
36	Lanthanum, cerium, and boron incorporated ZSM-12 zeolites for catalytic cracking of n -hexane. Journal of Analytical and Applied Pyrolysis, 2018, 129, 231-240.	5.5	20

#	Article	IF	CITATIONS
37	Experimental Investigation of Aluminosilicate Nanoparticles for Enhanced Recovery of Waxy Crude Oil. Energy & Fuels, 2019, 33, 6076-6082.	5.1	20
38	The role of acidity, side pocket, and steam on maximizing propylene yield from light naphtha cracking over one-dimensional zeolites: Case studies of EU-1 and disordered ZSM-48. Fuel, 2019, 258, 116034.	6.4	19
39	Microwave-Assisted Hydrothermal Synthesis of CHA Zeolite for Methanol-to-Olefins Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 60-68.	3.7	19
40	Controlling naphtha cracking using nanosized TON zeolite synthesized in the presence of polyoxyethylene surfactant. Journal of Analytical and Applied Pyrolysis, 2014, 110, 338-345.	5.5	18
41	Effect of zeolite structure and addition of steam on naphtha catalytic cracking to improve olefin production. Fuel, 2022, 321, 124089.	6.4	17
42	The role of alcohols and diols as co-solvents in fabrication of TON zeolite. Journal of Industrial and Engineering Chemistry, 2015, 29, 112-119.	5.8	16
43	Iron- and Cobalt-Doped Ceria–Zirconia Nanocomposites for Catalytic Cracking of Naphtha with Regenerative Capability. Energy & Fuels, 2017, 31, 12612-12623.	5.1	16
44	Steam cracking of green diesel (C12) to BTX and olefins over silane-treated hierarchical BEA. Fuel, 2020, 263, 116624.	6.4	16
45	Improved Municipal Solid Waste Gasification Efficiency Using a Modified Downdraft Gasifier with Variations of Air Input and Preheated Air Temperature. Energy & Fuels, 2019, 33, 11049-11056.	5.1	15
46	Lanthanum-impregnated zeolite modified carbon paste electrode for determination of Cadmium (II). Microporous and Mesoporous Materials, 2016, 225, 164-173.	4.4	14
47	Effect of Temperature and Concentration of Zeolite Catalysts from Geothermal Solid Waste in Biodiesel Production from Used Cooking Oil by Esterification–Transesterification Process. Processes, 2020, 8, 1629.	2.8	13
48	ZSM-5 Catalysts for MTO: Effect and Optimization of the Tetrapropylammonium Hydroxide Concentration on Synthesis and Performance. ACS Omega, 2022, 7, 21654-21663.	3.5	13
49	Stable Production of Gasoline-Ranged Hydrocarbons from Dimethyl Ether over Iron-Modified ZSM-22 Zeolite. Energy & Fuels, 2018, 32, 11796-11801.	5.1	12
50	Effects of metal support interaction on dry reforming of methane over Ni/ <scp>Ceâ€Al₂O₃</scp> catalysts. Canadian Journal of Chemical Engineering, 2020, 98, 2425-2434.	1.7	12
51	Biogasoline Production from Palm Oil: Optimization of Catalytic Cracking Parameters. Arabian Journal for Science and Engineering, 2020, 45, 7257-7266.	3.0	12
52	Fabrication of desilicated MTW zeolite and its application in catalytic cracking of n-heptane. Advanced Powder Technology, 2016, 27, 372-378.	4.1	11
53	Microwave-assisted solvothermal synthesis of ZSM-22 zeolite with controllable crystal lengths. Particuology, 2016, 24, 138-141.	3.6	11
54	Catalytic Cracking of <i>n</i> -Dodecane to Chemicals: Effect of Variable-Morphological ZSM-5 Zeolites Synthesized Using Various Silica Sources. ACS Omega, 2022, 7, 10317-10329.	3.5	11

#	Article	IF	CITATIONS
55	Role of crystal growth modifiers in the synthesis of ZSM-12 zeolite. Advanced Powder Technology, 2015, 26, 188-192.	4.1	10
56	Synthesis of silicalite-1 using fluoride media under microwave irradiation. Microporous and Mesoporous Materials, 2016, 233, 140-147.	4.4	10
57	Highlighting the Greener Shift in Transportation Energy and Fuels Based on Novel Catalytic Materials. Energy & Fuels, 2021, 35, 25-44.	5.1	10
58	Nano BEA zeolite catalysts for the selective catalytic cracking of n-dodecane to light olefins. RSC Advances, 2021, 11, 7904-7912.	3.6	10
59	Steam Catalytic Cracking of <i>n</i> -Hexane over Modified MTW Zeolites Impregnated by Extra-Framework Elements. Energy & Fuels, 2016, 30, 9679-9685.	5.1	9
60	Fabrication zone of OSDA-free and seed-free mordenite crystals. Powder Technology, 2019, 342, 992-997.	4.2	9
61	Selective catalytic cracking of n-hexane to olefins over SSZ-54 fabricated by facile and novel dual templating method. Fuel, 2018, 227, 48-58.	6.4	8
62	Naphtha catalytic cracking to olefins over zirconia–titania catalyst. Reaction Chemistry and Engineering, 2021, 7, 123-132.	3.7	8
63	A Review on the Conversion of Synthetic Gas to LPG over Hybrid Nanostructure Zeolites Catalysts. ChemistrySelect, 2022, 7, .	1.5	8
64	Stable Boron-Modified ZSM-22 Zeolite Catalyst for Selective Production of Propylene from Methanol. Energy & Fuels, 2019, 33, 12679-12684.	5.1	7
65	Development of New Kinetic Models for Methanol to Hydrocarbons over a Ca-ZSM-5 Catalyst. Energy & Fuels, 2020, 34, 6245-6260.	5.1	7
66	Conversion of Methanol to Olefins over Modified OSDA-Free CHA Zeolite Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 12189-12199.	3.7	7
67	Waste materials from palm oil plant as exploratory catalysts for FAME biodiesel production. Applied Nanoscience (Switzerland), 2022, 12, 3703-3719.	3.1	7
68	Development of surface modified mordenite catalysts and their stability in hot liquid water. Advanced Powder Technology, 2016, 27, 1404-1410.	4.1	6
69	Production of Sustainable Diesel via Decarboxylation of Palm Stearin Basic Soaps. Energy & Fuels, 2019, 33, 11648-11654.	5.1	6
70	Process design and technoâ€economic analysis of ethyl levulinate production from carbon dioxide and 1,4â€butanediol as an alternative biofuel and fuel additive. International Journal of Energy Research, 2019, 43, 5932-5945.	4.5	5
71	Acidity modifications of nanozeolite-Y for enhanced selectivity to olefins from the steam catalytic cracking of dodecane. RSC Advances, 2022, 12, 18274-18281.	3.6	5
72	Synthesis of phosphate-modified zeolite as a modifier in carbon paste electrode for nitrite electrochemical detection. Journal of Materials Science: Materials in Electronics, 2019, 30, 3283-3293.	2.2	4

#	Article	IF	CITATIONS
73	Geopolymer catalysts derived from palm oil mill ash for biodiesel production from Calophyllum inophyllum oil. Applied Nanoscience (Switzerland), 2022, 12, 3735-3745.	3.1	2
74	Performance of NiMo-Al ₂ O ₃ catalyst in biokerosene production via hydrocracking of dirty palm oil. International Journal of Ambient Energy, 0, , 1-11.	2.5	0