Yves Combarnous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2669580/publications.pdf

Version: 2024-02-01

212478 242451 2,621 105 28 47 citations h-index g-index papers 113 113 113 2064 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Membrane Hormone Receptors and Their Signaling Pathways as Targets for Endocrine Disruptors. Journal of Xenobiotics, 2022, 12, 64-73.	2.9	2
2	Receptors Thyroid-Stimulating Hormone/Luteinizing Hormone/Follicle-Stimulating Hormone Receptors. , 2021 , , 323 - 328 .		0
3	Effect of Soluble Adenylyl Cyclase (ADCY10) Inhibitors on the LH-Stimulated cAMP Synthesis in Mltc-1 Leydig Cell Line. International Journal of Molecular Sciences, 2021, 22, 4641.	1.8	4
4	Fluoxetine affects cytosolic cAMP, ATP, Ca ²⁺ responses to forskolin, and survival of human ovarian granulosa tumor COV434 cells. Korean Journal of Physiology and Pharmacology, 2021, 25, 189-195.	0.6	2
5	Highly sensitive in vitro bioassay for luteinizing hormone and chorionic gonadotropin allowing their measurement in plasma. Reproduction and Fertility, 2021, 2, 300-307.	0.6	2
6	Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays. International Journal of Molecular Sciences, 2020, 21, 8052.	1.8	25
7	Estrogenic Compounds or Adiponectin Inhibit Cyclic AMP Response to Human Luteinizing Hormone in Mouse Leydig Tumor Cells. Biology, 2019, 8, 45.	1.3	2
8	Comparative Overview of the Mechanisms of Action of Hormones and Endocrine Disruptor Compounds. Toxics, 2019, 7, 5.	1.6	75
9	Inhibition by fluoxetine of LH-stimulated cyclic AMP synthesis in tumor Leydig cells partly involves AMPK activation. PLoS ONE, 2019, 14, e0217519.	1.1	10
10	Choice of protocol for the inÂvivo bioassay of equine Chorionic Gonadotropin (eCG / PMSG) in immature female rats. Theriogenology, 2019, 130, 99-102.	0.9	3
11	Comparative effects of sub-stimulating concentrations of non-human versus human Luteinizing Hormones (LH) or chorionic gonadotropins (CG) on adenylate cyclase activation by forskolin in MLTC cells. General and Comparative Endocrinology, 2018, 261, 23-30.	0.8	7
12	Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors. Scientific Reports, 2017, 7, 940.	1.6	91
13	Endocrine Disruptor Compounds (EDCs) and agriculture: The case of pesticides. Comptes Rendus - Biologies, 2017, 340, 406-409.	0.1	74
14	ID: 1039 The antidepressant fluoxetine inhibits adenylate cyclase stimulation by FSH or Forskolin in the COV434 human ovarian granulosa tumor cell line. Biomedical Research and Therapy, 2017, 4, 117.	0.3	0
15	Involvement of Ovarian Estradiol Biosynthesis and Pituitary FSH Expression in the Mechanism of Human Chorionic Gonadotropin Stimulation of Uterine Growth in Immature Female Rats. Journal of Hormones, 2016, 2016, 1-7.	0.2	3
16	Ca2+/Calmodulin-Dependent Protein Kinase Kinases (CaMKKs) Effects on AMP-Activated Protein Kinase (AMPK) Regulation of Chicken Sperm Functions. PLoS ONE, 2016, 11, e0147559.	1.1	21
17	Calcium channels in chicken sperm regulate motility and the acrosome reaction. FEBS Journal, 2016, 283, 1902-1920.	2.2	23
18	Low reversibility of intracellular cAMP accumulation in mouse Leydig tumor cells (MLTC-1) stimulated by human Luteinizing Hormone (hLH) and Chorionic Gonadotropin (hCG). Molecular and Cellular Endocrinology, 2016, 434, 144-153.	1.6	14

#	Article	IF	Citations
19	The 5'-AMP-Activated Protein Kinase (AMPK) Is Involved in the Augmentation of Antioxidant Defenses in Cryopreserved Chicken Sperm. PLoS ONE, 2015, 10, e0134420.	1.1	59
20	Structureââ,¬â€œFunction Relationships of Glycoprotein Hormones and Their Subunitsââ,¬â,¢ Ancestors. Frontiers in Endocrinology, 2015, 6, 26.	1.5	63
21	Differential thermal stability of human, bovine and ovine Follicle-Stimulating Hormone (FSH) and Luteinizing Hormone (LH) quaternary structures. General and Comparative Endocrinology, 2015, 212, 124-130.	0.8	5
22	17α-Ethinylestradiol and nonylphenol affect the development of forebrain GnRH neurons through an estrogen receptors-dependent pathway. Reproductive Toxicology, 2012, 33, 198-204.	1.3	46
23	The additional N-glycosylation site of the equine LH/CG receptor is not responsible for the limited cyclic AMP pathway activation by equine chorionic gonadotropin relative to luteinizing hormone. Reproductive Biology, 2011, 11, 157-164.	0.9	1
24	Straightforward isolation of phosphatidyl-ethanolamine-binding protein-1 (PEBP-1) and ubiquitin from bovine testis by hydrophobic-interaction chromatography (HIC). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2935-2940.	1.2	3
25	Potentiation of the reductase activity of protein disulphide isomerase (PDI) by 19-nortestosterone, bacitracin, fluoxetine, and ammonium sulphate. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 681-687.	2.5	1
26	Use of the immature rat uterotrophic assay for specific measurements of chorionic gonadotropins and follicle-stimulating hormones in vivo bioactivities. Theriogenology, 2010, 74, 756-764.	0.9	3
27	17α-Ethinylestradiol disrupts the ontogeny of the forebrain GnRH system and the expression of brain aromatase during early development of zebrafish. Aquatic Toxicology, 2010, 99, 479-491.	1.9	77
28	Effect of Pharmaceutical Potential Endocrine Disruptor Compounds on Protein Disulfide Isomerase Reductase Activity Using Di-Eosin-Oxidized-Glutathion. PLoS ONE, 2010, 5, e9507.	1.1	11
29	The β104–109 sequence is essential for the secretion of correctly folded single-chain βα horse LH/CG and for its FSH activity. Journal of Endocrinology, 2009, 203, 167-174.	1.2	14
30	Comparative structure analyses of cystine knot-containing molecules with eight aminoacyl ring including glycoprotein hormones (GPH) alpha and beta subunits and GPH-related A2 (GPA2) and B5 (GPB5) molecules. Reproductive Biology and Endocrinology, 2009, 7, 90.	1.4	33
31	Long-term exposure of male rats to low-dose ethinylestradiol (EE2) in drinking water: Effects on ponderal growth and on litter size of their progeny. Reproductive Toxicology, 2008, 25, 161-168.	1.3	30
32	Stability and biological activities of heterodimeric and single-chain equine LH/chorionic gonadotropin variants. Journal of Molecular Endocrinology, 2008, 40, 185-198.	1.1	21
33	Nitro-thiocyanobenzoic acid (NTCB) reactivity of cysteines \hat{l}^2100 and \hat{l}^2110 in porcine luteinizing hormone: Metastability and hypothetical isomerization of the two disulfide bridges of its \hat{l}^2 -subunit seatbelt. Molecular and Cellular Endocrinology, 2006, 247, 175-182.	1.6	7
34	Involvement of equine chorionic gonadotropin (eCG) carbohydrate side chains in its bioactivity; lessons from recombinant hormone expressed in insect cells. Reproduction, Nutrition, Development, 2005, 45, 255-259.	1.9	15
35	Biological activities of recombinant equine luteinizing hormone/chorionic gonadotropin (eLH/CG) expressed in Sf9 and Mimic insect cell lines. Journal of Molecular Endocrinology, 2005, 34, 47-60.	1.1	32
36	Mammalian-like nonsialyl complex-type N-glycosylation of equine gonadotropins in Mimicâ,,¢ insect cells. Glycobiology, 2005, 15, 776-790.	1.3	47

#	Article	IF	CITATIONS
37	Identification of amino-acids in the alpha-subunit first and third loops that are crucial for the heterospecific follicle-stimulating hormone activity of equid luteinizing hormone/choriogonadotropin. European Journal of Endocrinology, 2004, 150, 877-884.	1.9	3
38	Expression of the full-length and alternatively spliced equine luteinizing hormone/chorionic gonadotropin receptor mRNAs in the primary corpus luteum and fetal gonads during pregnancy. Reproduction, 2004, 128, 219-228.	1.1	2
39	Cloning and functional expression of the equine luteinizing hormone/chorionic gonadotrophin receptor. Journal of Endocrinology, 2004, 183, 551-559.	1.2	3
40	Overexpression of ovine leptin in Pichia pastoris: physiological yeast response to leptin production and characterization of the recombinant hormone. Yeast, 2004, 21, 249-263.	0.8	18
41	Association/dissociation of gonadotropin subunits involves disulfide bridge disruption which is influenced by carbohydrate moiety. Biochemical and Biophysical Research Communications, 2004, 324, 868-873.	1.0	15
42	Induced Lactation with a Dopamine Antagonist in Mares: Different Responses between Ovariectomized and Intact Mares. Reproduction in Domestic Animals, 2003, 38, 394-400.	0.6	20
43	Fast renal trapping of porcine luteinizing hormone (pLH) shown by 123I-scintigraphic imaging in rats explains its short circulatory half-life. Reproductive Biology and Endocrinology, 2003, 1, 64.	1.4	16
44	Activin Signaling Pathways in Ovine Pituitary and LÎ 2 T2 Gonadotrope Cells. Biology of Reproduction, 2003, 68, 1877-1887.	1.2	73
45	Expression and Binding Activity of Luteinizing Hormone/Chorionic Gonadotropin Receptors in the Primary Corpus Luteum During Early Pregnancy in the Mare 1. Biology of Reproduction, 2003, 69, 1743-1749.	1.2	19
46	Conformational stability and in vitro bioactivity of porcine luteinizing hormone. Molecular and Cellular Endocrinology, 2001, 176, 129-134.	1.6	7
47	Stimulating Effect of Glycoprotein Hormone Free alpha-Subunit and Daily Gonadotropin Releasing Hormone Treatment on Prolactin Release from 50-Day Ovine Foetal Pituitary Explants. Journal of Neuroendocrinology, 2001, 13, 199-208.	1.2	9
48	beta-Subunit 102-104 residues are crucial to confer FSH activity to equine LH/CG but are not sufficient to confer FSH activity to human CG. Journal of Endocrinology, 2001, 169, 55-63.	1,2	13
49	Human chorionic gonadotropin with C-elongated alpha-subunit retains full receptor binding and partial agonist activity. European Journal of Endocrinology, 2000, 142, 402-405.	1.9	4
50	Expression of an in vitro biologically active equine LH/CG without C-terminal peptide (CTP) and/or beta26-110 disulphide bridge. Journal of Endocrinology, 2000, 167, 117-124.	1.2	16
51	The Cysteine-Rich Domain of the Macrophage Mannose Receptor Is a Multispecific Lectin That Recognizes Chondroitin Sulfates a and B and Sulfated Oligosaccharides of Blood Group Lewisa and Lewisx Types in Addition to the Sulfated N-Glycans of Lutropin. Journal of Experimental Medicine, 2000. 191. 1117-1126.	4.2	163
52	Two free isoforms of ovine glycoprotein hormone alpha-subunit strongly differ in their ability to stimulate prolactin release from foetal pituitaries. Journal of Endocrinology, 2000, 164, 287-297.	1.2	11
53	Involvement of G Protein-Coupled Receptor Kinases and Arrestins in Desensitization to Follicle-Stimulating Hormone Action. Molecular Endocrinology, 1999, 13, 1599-1614.	3.7	72
54	Humoral Immune Response to Equine Chorionic Gonadotropin in Ewes: Association with Major Histocompatibility Complex and Interference with Subsequent Fertility1. Biology of Reproduction, 1999, 61, 209-218.	1.2	43

#	Article	IF	CITATIONS
55	The Negative Effect of Repeated Equine Chorionic Gonadotropin Treatment on Subsequent Fertility in Alpine Goats Is Due to a Humoral Immune Response Involving the Major Histocompatibility Complex1. Biology of Reproduction, 1999, 60, 805-813.	1.2	80
56	Structure et relations structure-activit \tilde{A} des hormones folliculo-stimulantes recombinantes humaines Medecine/Sciences, 1999, 15, 167.	0.0	1
57	Mammalian follicle-stimulating hormone receptors and their ligands. European Journal of Obstetrics, Gynecology and Reproductive Biology, 1998, 77, 125-130.	0.5	7
58	\hat{l}^22 adrenergic receptors mediate cAMP, tissue-type plasminogen activator and transferrin production in rat Sertoli cells. Molecular and Cellular Endocrinology, 1998, 142, 75-86.	1.6	23
59	High-Level Secretion of Biologically Active Recombinant Porcine Follicle-Stimulating Hormone by the Methylotrophic YeastPichia pastoris. Biochemical and Biophysical Research Communications, 1998, 245, 847-852.	1.0	30
60	Expression of horse and donkey LH in COS-7 cells: evidence for low FSH activity in donkey LH compared with horse LH. Journal of Endocrinology, 1997, 152, 371-377.	1.2	22
61	Deterioration of Goat Sperm Viability in Milk Extenders is due to a Bulbourethral 60-Kilodalton Glycoprotein with Triglyceride Lipase Activity1. Biology of Reproduction, 1997, 57, 1023-1031.	1.2	54
62	Cloning, sequencing and in vitro functional expression of recombinant donkey follicle-stimulating hormone receptor: a new insight into the binding specificity of gonadotrophin receptors. Journal of Molecular Endocrinology, 1997, 18, 193-202.	1.1	9
63	Evidence that the alpha-subunit influences the specificity of receptor binding of the equine gonadotrophins. Journal of Endocrinology, 1997, 155, 241-245.	1.2	9
64	Radioimmunoassay and enzyme-linked immunosorbent assay techniques as aids to studying pituitary hormones and improving reproductive management of the one-humped camel. Journal of Arid Environments, 1994, 26, 15-20.	1.2	2
65	Protein kinases and protein synthesis are involved in desensitization of the plasminogen activator response of rat Sertoli cells by follicle-stimulating hormone. FEBS Letters, 1994, 352, 19-23.	1.3	4
66	Role of sialic acid residues in the in vitro superactivity of human choriogonadotropin (hCG) in rat Leydig cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1224, 559-565.	1.9	9
67	Structure-function relationships and mechanism of action of pituitary and placental gonadotrophins. Reproduction, Fertility and Development, 1994, 6, 157.	0.1	7
68	Topography of equine chorionic gonadotropin epitopes relative to the luteinizing hormone and follicle-stimulating hormone receptor interaction sites. Molecular and Cellular Endocrinology, 1993, 92, 229-239.	1.6	34
69	Involvement of cyclic adenosine monophosphate-dependent protein kinase isozymes in tissue plasminogen activator secretion by rat Sertoli cells stimulated with follicle-stimulating hormone in vitro. European Journal of Endocrinology, 1993, 128, 555-562.	1.9	5
70	Molecular Basis of the Specificity of Binding of Glycoprotein Hormones to Their Receptors. Endocrine Reviews, 1992, 13, 670-691.	8.9	190
71	Enzyme Immunoassay (EIA) for Equine Chorionic Gonadotropin / Pregnant Mare Serum Gonadotropin (eCG/PMSG). Journal of Immunoassay, 1992, 13, 483-493.	0.3	10
72	Immunochemical study of equine chorionic gonadotropin (eCG/PMSG): antigenic determinants on \hat{l}_{\pm} - and \hat{l}_{\pm} -subunits. BBA - Proteins and Proteomics, 1992, 1159, 74-80.	2.1	9

#	Article	IF	CITATIONS
73	Characterization of human follicle-stimulating hormone binding to human granulosa cells by an immunoenzymological method. Analytical Biochemistry, 1992, 202, 71-75.	1.1	2
74	Determination of the primary and secondary structures of the dromedary (Camelus dromedarius) prolactin and comparison with prolactins from other species. BBA - Proteins and Proteomics, 1991, 1077, 339-345.	2.1	4
75	Equine follicle-stimulating hormone action in cultured Sertoli cells from rat, sheep and pig. European Journal of Endocrinology, 1991, 125, 86-92.	1.9	4
76	Purification and characterization of glycosylated and non-glycosylated forms of prolactin from the		

#	Article	IF	Citations
91	Physico-chemical properties of pregnant mare serum gonadotropin. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1981, 667, 267-276.	1.7	21
92	Equine follicle-stimulating hormone. Purification, acid dissociation, and binding to equine testicular tissue. Journal of Biological Chemistry, 1981, 256, 9567-72.	1.6	19
93	Study of Follitropin Receptors in Testis Using a Homologous System. Binding of Porcine Follitropin to Plasma Membranes from Immature Porcine Testis and Correlation with Adenylate Cyclase Stimulation. FEBS Journal, 1978, 86, 121-131.	0.2	46
94	Porcine lutropin: A study of the association of its subunits by hydrogen-deuterium exchange. Biochemical and Biophysical Research Communications, 1978, 84, 1119-1124.	1.0	13
95	Pregnant mare serum gonadotropin exhibits higher affinity for lutropin than for follitropin receptors of porcine testis. FEBS Letters, 1978, 90, 65-68.	1.3	27
96	CHEMICAL STUDY OF THE TOPOGRAPHY OF PORCINE LUTROPIN (LH)* USING DINITROFLUOROBENZENE AND DANSYL CHLORIDE. International Journal of Peptide and Protein Research, 1976, 8, 491-498.	0.1	8
97	Luteinizing Hormone. 1. Circular Dichroism and Spectrophotometric Titration of Porcine and Bovine Hormones and of Their alpha and beta Subunits. FEBS Journal, 1974, 42, 7-12.	0.2	25
98	Luteinizing Hormone. 2. Relative Reactivities of Tyrosyl Residues of the Porcine Hormone Towards Iodination. FEBS Journal, 1974, 42, 13-19.	0.2	61
99	Luteinizing hormone derivatives with covalently-linked subunits. FEBS Letters, 1974, 44, 224-228.	1.3	32
100	The Disulphide Bridges of Porcine Luteinizing Hormone \hat{l}_{\pm} Subunit. Biochemical Society Transactions, 1974, 2, 915-917.	1.6	26
101	The Primary Structure of the Porcine Luteinizing-Hormone alpha-Subunit. FEBS Journal, 1973, 39, 255-263.	0.2	53
102	Role of a regulating protein and molecular oxygen in the mechanism of action of luteinizing hormone. Biochimica Et Biophysica Acta - General Subjects, 1971, 244, 625-633.	1.1	40
103	Molecular Basis of the Specificity of Binding of Glycoprotein Hormones to Their Receptors. , 0, .		11
104	Human luteinizing hormone (hLH) and chorionic gonadotropin (hCG) display biased agonism at the LH/CG receptor. Endocrine Abstracts, 0 , , .	0.0	1
105	Heterogeneous hCG and hMG commercial preparations result in biased intracellular signaling but induce similar progesterone response in vitro. Endocrine Abstracts, 0, , .	0.0	0